mohcineelharras
commited on
Commit
·
8df831b
1
Parent(s):
c89b497
Upload app.py
Browse files
app.py
CHANGED
@@ -80,6 +80,7 @@ template = (
|
|
80 |
"If a question is asked about content not in the documents or context, respond with 'I do not have that information.' "
|
81 |
"Always respond in the same language as the question was asked. Be concise.\n"
|
82 |
"Respond to the best of your ability. Try to respond in markdown.\"\n"
|
|
|
83 |
"context\n"
|
84 |
"{context}\n"
|
85 |
"user\n"
|
@@ -90,30 +91,32 @@ template = (
|
|
90 |
|
91 |
# --------------------------------cache LLM-----------------------------------
|
92 |
|
93 |
-
|
94 |
-
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
|
95 |
-
llama_debug = LlamaDebugHandler(print_trace_on_end=True)
|
96 |
-
callback_manager = CallbackManager([llama_debug])
|
97 |
-
|
98 |
@st.cache_resource
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
# --------------------------------cache Embedding model-----------------------------------
|
112 |
|
113 |
@st.cache_resource
|
114 |
def load_emb_model():
|
115 |
if not os.path.exists("data"):
|
116 |
-
st.error("Data directory does not exist. Please upload the data.")
|
117 |
os.makedirs("data")
|
118 |
return None #
|
119 |
embed_model_inst = InstructorEmbedding("models/hkunlp_instructor-base"
|
@@ -126,44 +129,44 @@ def load_emb_model():
|
|
126 |
index = VectorStoreIndex.from_documents(
|
127 |
documents, service_context=service_context, show_progress=True)
|
128 |
return index.as_query_engine(text_qa_template=text_qa_template, refine_template=refine_template)
|
|
|
129 |
|
130 |
-
# --------------------------------cache
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
-
# LLM
|
133 |
@st.cache_resource
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
generate_kwargs={},
|
146 |
-
model_kwargs={"n_gpu_layers": 20},
|
147 |
-
verbose=True,
|
148 |
-
)
|
149 |
-
return llm
|
150 |
|
151 |
# ------------------------------------session state----------------------------------------
|
152 |
|
153 |
if 'memory' not in st.session_state:
|
154 |
st.session_state.memory = ""
|
155 |
|
156 |
-
# LLM Model Loading
|
157 |
-
if 'llm_model' not in st.session_state:
|
158 |
-
|
159 |
-
# Use the models from session state
|
160 |
-
llm = st.session_state.llm_model
|
161 |
-
|
162 |
-
# Embedding Model Loading
|
163 |
-
if 'emb_model' not in st.session_state:
|
164 |
-
|
165 |
-
# Use the models from session state
|
166 |
-
query_engine = st.session_state.emb_model
|
167 |
|
168 |
# ------------------------------------layout----------------------------------------
|
169 |
|
@@ -189,7 +192,7 @@ tab1, tab2, tab3 = st.tabs(["LLM only", "LLM RAG QA with database", "One single
|
|
189 |
|
190 |
with tab1:
|
191 |
st.title("💬 LLM only")
|
192 |
-
prompt = st.
|
193 |
"Ask your question here",
|
194 |
placeholder="How do miners contribute to the security of the blockchain ?",
|
195 |
)
|
@@ -208,7 +211,7 @@ with tab1:
|
|
208 |
with tab2:
|
209 |
st.title("💬 LLM RAG QA with database")
|
210 |
st.write("To consult files that are available in the database, go to https://huggingface.co/spaces/mohcineelharras/llama-index-docs-spaces/tree/main/data")
|
211 |
-
prompt = st.
|
212 |
"Ask your question here",
|
213 |
placeholder="Who is Mohcine ?",
|
214 |
)
|
@@ -234,13 +237,12 @@ with tab2:
|
|
234 |
|
235 |
with tab3:
|
236 |
st.title("📝 One single document Q&A with Llama Index using local open llms")
|
237 |
-
if st.button('Reinitialize Query Engine', key='reinit_engine'):
|
238 |
-
|
239 |
-
|
240 |
-
st.write("Query engine reinitialized.")
|
241 |
|
242 |
uploaded_file = st.file_uploader("Upload an File", type=("txt", "csv", "md","pdf"))
|
243 |
-
question = st.
|
244 |
"Ask something about the files",
|
245 |
placeholder="Can you give me a short summary?",
|
246 |
disabled=not uploaded_file,
|
@@ -251,22 +253,23 @@ with tab3:
|
|
251 |
|
252 |
if uploaded_file:
|
253 |
if not os.path.exists("draft_docs"):
|
254 |
-
st.error("draft_docs directory does not exist. Please download and copy paste a model in folder models.")
|
255 |
os.makedirs("draft_docs")
|
256 |
with open("draft_docs/"+uploaded_file.name, "wb") as f:
|
257 |
text = uploaded_file.read()
|
258 |
f.write(text)
|
259 |
text = uploaded_file.read()
|
260 |
# Embedding Model Loading
|
261 |
-
|
262 |
-
st.session_state.emb_model_upload_doc = load_emb_uploaded_document("draft_docs/"+uploaded_file.name)
|
263 |
-
# Use the models from session state
|
264 |
-
query_engine_upload_doc = st.session_state.emb_model_upload_doc
|
265 |
# if load_emb_uploaded_document:
|
266 |
# load_emb_uploaded_document.clear()
|
267 |
#load_emb_uploaded_document.clear()
|
268 |
st.write("File ",uploaded_file.name, "was loaded successfully")
|
269 |
-
|
|
|
|
|
|
|
|
|
|
|
270 |
if uploaded_file and question and api_server_info:
|
271 |
contextual_prompt = st.session_state.memory + "\n" + question
|
272 |
response = query_engine_upload_doc.query(contextual_prompt)
|
@@ -288,7 +291,8 @@ with tab3:
|
|
288 |
#st.write()
|
289 |
#print("Is File uploaded : ",uploaded_file==True, "Is question asked : ", question==True, "Is question asked : ", api_server_info==True)
|
290 |
|
291 |
-
st.subheader('⚠️ Warning: To avoid lags')
|
|
|
292 |
st.markdown("Please consider **delete input prompt** and **clear memory** with the button on sidebar, each time you switch to another tab")
|
293 |
st.markdown("If you've got a GPU locally, the execution could be a **lot faster** (approximately 5 seconds on my local machine).")
|
294 |
|
|
|
80 |
"If a question is asked about content not in the documents or context, respond with 'I do not have that information.' "
|
81 |
"Always respond in the same language as the question was asked. Be concise.\n"
|
82 |
"Respond to the best of your ability. Try to respond in markdown.\"\n"
|
83 |
+
"If the user prompt is in French, YOU MUST ANSWER IN FRENCH. Otherwise, speak English\"\n"
|
84 |
"context\n"
|
85 |
"{context}\n"
|
86 |
"user\n"
|
|
|
91 |
|
92 |
# --------------------------------cache LLM-----------------------------------
|
93 |
|
94 |
+
# LLM
|
|
|
|
|
|
|
|
|
95 |
@st.cache_resource
|
96 |
+
def load_llm_model():
|
97 |
+
if not os.path.exists("models"):
|
98 |
+
os.makedirs("models")
|
99 |
+
return None #
|
100 |
+
llm = LlamaCPP(
|
101 |
+
#model_url="https://huggingface.co/TheBloke/Llama-2-13B-chat-GGUF/resolve/main/llama-2-13b-chat.Q5_K_M.gguf",
|
102 |
+
model_path="models/dolphin-2.1-mistral-7b.Q4_K_S.gguf",
|
103 |
+
temperature=0.0,
|
104 |
+
max_new_tokens=100,
|
105 |
+
context_window=4096,
|
106 |
+
generate_kwargs={},
|
107 |
+
model_kwargs={"n_gpu_layers": 20},
|
108 |
+
verbose=True,
|
109 |
+
)
|
110 |
+
return llm
|
111 |
+
|
112 |
+
llm = load_llm_model()
|
113 |
+
|
114 |
|
115 |
# --------------------------------cache Embedding model-----------------------------------
|
116 |
|
117 |
@st.cache_resource
|
118 |
def load_emb_model():
|
119 |
if not os.path.exists("data"):
|
|
|
120 |
os.makedirs("data")
|
121 |
return None #
|
122 |
embed_model_inst = InstructorEmbedding("models/hkunlp_instructor-base"
|
|
|
129 |
index = VectorStoreIndex.from_documents(
|
130 |
documents, service_context=service_context, show_progress=True)
|
131 |
return index.as_query_engine(text_qa_template=text_qa_template, refine_template=refine_template)
|
132 |
+
query_engine = load_emb_model()
|
133 |
|
134 |
+
# --------------------------------cache embd one doc-----------------------------------
|
135 |
+
|
136 |
+
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
|
137 |
+
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
|
138 |
+
llama_debug = LlamaDebugHandler(print_trace_on_end=True)
|
139 |
+
callback_manager = CallbackManager([llama_debug])
|
140 |
|
|
|
141 |
@st.cache_resource
|
142 |
+
#One doc embedding
|
143 |
+
def load_emb_uploaded_document(filename):
|
144 |
+
# You may want to add a check to prevent execution during initialization.
|
145 |
+
if 'init' in st.session_state:
|
146 |
+
embed_model_inst = InstructorEmbedding("models/hkunlp_instructor-base")
|
147 |
+
service_context = ServiceContext.from_defaults(embed_model=embed_model_inst, llm=llm, chunk_size=500)
|
148 |
+
documents = SimpleDirectoryReader(input_files=[filename]).load_data()
|
149 |
+
index = VectorStoreIndex.from_documents(
|
150 |
+
documents, service_context=service_context, show_progress=True)
|
151 |
+
return index.as_query_engine(text_qa_template=text_qa_template, refine_template=refine_template)
|
152 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
# ------------------------------------session state----------------------------------------
|
155 |
|
156 |
if 'memory' not in st.session_state:
|
157 |
st.session_state.memory = ""
|
158 |
|
159 |
+
# # LLM Model Loading
|
160 |
+
# if 'llm_model' not in st.session_state:
|
161 |
+
# st.session_state.llm_model = load_llm_model()
|
162 |
+
# # Use the models from session state
|
163 |
+
# llm = st.session_state.llm_model
|
164 |
+
|
165 |
+
# # Embedding Model Loading
|
166 |
+
# if 'emb_model' not in st.session_state:
|
167 |
+
# st.session_state.emb_model = load_emb_model()
|
168 |
+
# # Use the models from session state
|
169 |
+
# query_engine = st.session_state.emb_model
|
170 |
|
171 |
# ------------------------------------layout----------------------------------------
|
172 |
|
|
|
192 |
|
193 |
with tab1:
|
194 |
st.title("💬 LLM only")
|
195 |
+
prompt = st.text_area(
|
196 |
"Ask your question here",
|
197 |
placeholder="How do miners contribute to the security of the blockchain ?",
|
198 |
)
|
|
|
211 |
with tab2:
|
212 |
st.title("💬 LLM RAG QA with database")
|
213 |
st.write("To consult files that are available in the database, go to https://huggingface.co/spaces/mohcineelharras/llama-index-docs-spaces/tree/main/data")
|
214 |
+
prompt = st.text_area(
|
215 |
"Ask your question here",
|
216 |
placeholder="Who is Mohcine ?",
|
217 |
)
|
|
|
237 |
|
238 |
with tab3:
|
239 |
st.title("📝 One single document Q&A with Llama Index using local open llms")
|
240 |
+
# if st.button('Reinitialize Query Engine', key='reinit_engine'):
|
241 |
+
# del query_engine_upload_doc
|
242 |
+
# st.write("Query engine reinitialized.")
|
|
|
243 |
|
244 |
uploaded_file = st.file_uploader("Upload an File", type=("txt", "csv", "md","pdf"))
|
245 |
+
question = st.text_area(
|
246 |
"Ask something about the files",
|
247 |
placeholder="Can you give me a short summary?",
|
248 |
disabled=not uploaded_file,
|
|
|
253 |
|
254 |
if uploaded_file:
|
255 |
if not os.path.exists("draft_docs"):
|
|
|
256 |
os.makedirs("draft_docs")
|
257 |
with open("draft_docs/"+uploaded_file.name, "wb") as f:
|
258 |
text = uploaded_file.read()
|
259 |
f.write(text)
|
260 |
text = uploaded_file.read()
|
261 |
# Embedding Model Loading
|
262 |
+
query_engine_upload_doc = load_emb_uploaded_document("draft_docs/"+uploaded_file.name)
|
|
|
|
|
|
|
263 |
# if load_emb_uploaded_document:
|
264 |
# load_emb_uploaded_document.clear()
|
265 |
#load_emb_uploaded_document.clear()
|
266 |
st.write("File ",uploaded_file.name, "was loaded successfully")
|
267 |
+
else:
|
268 |
+
try:
|
269 |
+
del query_engine_upload_doc
|
270 |
+
except:
|
271 |
+
pass
|
272 |
+
|
273 |
if uploaded_file and question and api_server_info:
|
274 |
contextual_prompt = st.session_state.memory + "\n" + question
|
275 |
response = query_engine_upload_doc.query(contextual_prompt)
|
|
|
291 |
#st.write()
|
292 |
#print("Is File uploaded : ",uploaded_file==True, "Is question asked : ", question==True, "Is question asked : ", api_server_info==True)
|
293 |
|
294 |
+
st.subheader('⚠️ Warning: To avoid lags read carefully the steps below')
|
295 |
+
st.markdown("**ONE EXECUTION COULD TAKE UP TO 2 or 3 minutes because of hardware (0.9 token/second)**")
|
296 |
st.markdown("Please consider **delete input prompt** and **clear memory** with the button on sidebar, each time you switch to another tab")
|
297 |
st.markdown("If you've got a GPU locally, the execution could be a **lot faster** (approximately 5 seconds on my local machine).")
|
298 |
|