# Load model directly from transformers import AutoTokenizer, AutoModelForQuestionAnswering from sentence_transformers import SentenceTransformer from transformers import Trainer import torch import torch.nn.functional as F class ModelWrapper(): def __init__(self, location = "./models/deepset/tinyroberta-squad"): self.model_location = location self.tokenizer = AutoTokenizer.from_pretrained(self.model_location) self.model_qa = AutoModelForQuestionAnswering.from_pretrained(self.model_location) self.embedding_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') def get_embeddings(self, text, isDocument): if isDocument: text = text.split(".") embeddings = self.embedding_model.encode(text) if isDocument: embeddings = sum(embeddings).reshape(1,-1) else: embeddings = embeddings.reshape(1,-1) return embeddings