File size: 8,782 Bytes
2ac3e6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2014947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import torch
import torch.nn as nn
import torch.nn.functional as F
from math import log2

"""
Factors is used in Discrmininator and Generator for how much
the channels should be multiplied and expanded for each layer,
so specifically the first 5 layers the channels stay the same,
whereas when we increase the img_size (towards the later layers)
we decrease the number of chanels by 1/2, 1/4, etc.
"""
factors = [1, 1, 1, 1, 1 / 2, 1 / 4, 1 / 8, 1 / 16, 1 / 32]


class WSConv2d(nn.Module):
    """
    Weight scaled Conv2d (Equalized Learning Rate)
    Note that input is multiplied rather than changing weights
    this will have the same result.


    """

    def __init__(
        self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, gain=2
    ):
        super(WSConv2d, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
        self.scale = (gain / (in_channels * (kernel_size ** 2))) ** 0.5
        self.bias = self.conv.bias
        self.conv.bias = None

        # initialize conv layer
        nn.init.normal_(self.conv.weight)
        nn.init.zeros_(self.bias)

    def forward(self, x):
        return self.conv(x * self.scale) + self.bias.view(1, self.bias.shape[0], 1, 1)


class PixelNorm(nn.Module):
    def __init__(self):
        super(PixelNorm, self).__init__()
        self.epsilon = 1e-8

    def forward(self, x):
        return x / torch.sqrt(torch.mean(x ** 2, dim=1, keepdim=True) + self.epsilon)


class ConvBlock(nn.Module):
    def __init__(self, in_channels, out_channels, use_pixelnorm=True):
        super(ConvBlock, self).__init__()
        self.use_pn = use_pixelnorm
        self.conv1 = WSConv2d(in_channels, out_channels)
        self.conv2 = WSConv2d(out_channels, out_channels)
        self.leaky = nn.LeakyReLU(0.2)
        self.pn = PixelNorm()

    def forward(self, x):
        x = self.leaky(self.conv1(x))
        x = self.pn(x) if self.use_pn else x
        x = self.leaky(self.conv2(x))
        x = self.pn(x) if self.use_pn else x
        return x


class Generator(nn.Module):
    def __init__(self, z_dim, in_channels, img_channels=3):
        super(Generator, self).__init__()

        # initial takes 1x1 -> 4x4
        self.initial = nn.Sequential(
            PixelNorm(),
            nn.ConvTranspose2d(z_dim, in_channels, 4, 1, 0),
            nn.LeakyReLU(0.2),
            WSConv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1),
            nn.LeakyReLU(0.2),
            PixelNorm(),
        )

        self.initial_rgb = WSConv2d(
            in_channels, img_channels, kernel_size=1, stride=1, padding=0
        )
        self.prog_blocks, self.rgb_layers = (
            nn.ModuleList([]),
            nn.ModuleList([self.initial_rgb]),
        )

        for i in range(
            len(factors) - 1
        ):  # -1 to prevent index error because of factors[i+1]
            conv_in_c = int(in_channels * factors[i])
            conv_out_c = int(in_channels * factors[i + 1])
            self.prog_blocks.append(ConvBlock(conv_in_c, conv_out_c))
            self.rgb_layers.append(
                WSConv2d(conv_out_c, img_channels, kernel_size=1, stride=1, padding=0)
            )

    def fade_in(self, alpha, upscaled, generated):
        # alpha should be scalar within [0, 1], and upscale.shape == generated.shape
        return torch.tanh(alpha * generated + (1 - alpha) * upscaled)

    def forward(self, x, alpha, steps):
        out = self.initial(x)

        if steps == 0:
            return self.initial_rgb(out)

        for step in range(steps):
            upscaled = F.interpolate(out, scale_factor=2, mode="nearest")
            out = self.prog_blocks[step](upscaled)

        # The number of channels in upscale will stay the same, while
        # out which has moved through prog_blocks might change. To ensure
        # we can convert both to rgb we use different rgb_layers
        # (steps-1) and steps for upscaled, out respectively
        final_upscaled = self.rgb_layers[steps - 1](upscaled)
        final_out = self.rgb_layers[steps](out)
        return self.fade_in(alpha, final_upscaled, final_out)


class Discriminator(nn.Module):
    def __init__(self, z_dim, in_channels, img_channels=3):
        super(Discriminator, self).__init__()
        self.prog_blocks, self.rgb_layers = nn.ModuleList([]), nn.ModuleList([])
        self.leaky = nn.LeakyReLU(0.2)

        # here we work back ways from factors because the discriminator
        # should be mirrored from the generator. So the first prog_block and
        # rgb layer we append will work for input size 1024x1024, then 512->256-> etc
        for i in range(len(factors) - 1, 0, -1):
            conv_in = int(in_channels * factors[i])
            conv_out = int(in_channels * factors[i - 1])
            self.prog_blocks.append(ConvBlock(conv_in, conv_out, use_pixelnorm=False))
            self.rgb_layers.append(
                WSConv2d(img_channels, conv_in, kernel_size=1, stride=1, padding=0)
            )

        # perhaps confusing name "initial_rgb" this is just the RGB layer for 4x4 input size
        # did this to "mirror" the generator initial_rgb
        self.initial_rgb = WSConv2d(
            img_channels, in_channels, kernel_size=1, stride=1, padding=0
        )
        self.rgb_layers.append(self.initial_rgb)
        self.avg_pool = nn.AvgPool2d(
            kernel_size=2, stride=2
        )  # down sampling using avg pool

        # this is the block for 4x4 input size
        self.final_block = nn.Sequential(
            # +1 to in_channels because we concatenate from MiniBatch std
            WSConv2d(in_channels + 1, in_channels, kernel_size=3, padding=1),
            nn.LeakyReLU(0.2),
            WSConv2d(in_channels, in_channels, kernel_size=4, padding=0, stride=1),
            nn.LeakyReLU(0.2),
            WSConv2d(
                in_channels, 1, kernel_size=1, padding=0, stride=1
            ),  # we use this instead of linear layer
        )

    def fade_in(self, alpha, downscaled, out):
        """Used to fade in downscaled using avg pooling and output from CNN"""
        # alpha should be scalar within [0, 1], and upscale.shape == generated.shape
        return alpha * out + (1 - alpha) * downscaled

    def minibatch_std(self, x):
        batch_statistics = (
            torch.std(x, dim=0).mean().repeat(x.shape[0], 1, x.shape[2], x.shape[3])
        )
        # we take the std for each example (across all channels, and pixels) then we repeat it
        # for a single channel and concatenate it with the image. In this way the discriminator
        # will get information about the variation in the batch/image
        return torch.cat([x, batch_statistics], dim=1)

    def forward(self, x, alpha, steps):
        # where we should start in the list of prog_blocks, maybe a bit confusing but
        # the last is for the 4x4. So example let's say steps=1, then we should start
        # at the second to last because input_size will be 8x8. If steps==0 we just
        # use the final block
        cur_step = len(self.prog_blocks) - steps

        # convert from rgb as initial step, this will depend on
        # the image size (each will have it's on rgb layer)
        out = self.leaky(self.rgb_layers[cur_step](x))

        if steps == 0:  # i.e, image is 4x4
            out = self.minibatch_std(out)
            return self.final_block(out).view(out.shape[0], -1)

        # because prog_blocks might change the channels, for down scale we use rgb_layer
        # from previous/smaller size which in our case correlates to +1 in the indexing
        downscaled = self.leaky(self.rgb_layers[cur_step + 1](self.avg_pool(x)))
        out = self.avg_pool(self.prog_blocks[cur_step](out))

        # the fade_in is done first between the downscaled and the input
        # this is opposite from the generator
        out = self.fade_in(alpha, downscaled, out)

        for step in range(cur_step + 1, len(self.prog_blocks)):
            out = self.prog_blocks[step](out)
            out = self.avg_pool(out)

        out = self.minibatch_std(out)
        return self.final_block(out).view(out.shape[0], -1)


if __name__ == "__main__":
    Z_DIM = 100
    IN_CHANNELS = 256
    gen = Generator(Z_DIM, IN_CHANNELS, img_channels=3)
    critic = Discriminator(Z_DIM, IN_CHANNELS, img_channels=3)

    for img_size in [4, 8, 16, 32, 64, 128, 256, 512, 1024]:
        num_steps = int(log2(img_size / 4))
        x = torch.randn((1, Z_DIM, 1, 1))
        z = gen(x, 0.5, steps=num_steps)
        assert z.shape == (1, 3, img_size, img_size)
        out = critic(z, alpha=0.5, steps=num_steps)
        assert out.shape == (1, 1)
        print(f"Success! At img size: {img_size}")