File size: 7,199 Bytes
c3fc836 8633710 36784c4 c3fc836 8633710 c3fc836 8633710 36784c4 dff0f00 36784c4 a297744 36784c4 8633710 bba96cd 3533d0c 0bb6b1b bba96cd 36784c4 8633710 36784c4 bba96cd 3533d0c 36784c4 bba96cd 60c6432 36784c4 dff0f00 36784c4 dff0f00 36784c4 c3fc836 36784c4 dff0f00 36784c4 dff0f00 36784c4 c3fc836 36784c4 c3fc836 36784c4 2819fb4 36784c4 2819fb4 dff0f00 2819fb4 dff0f00 089e758 9ca38ff f7c6c35 089e758 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import * as webllm from "@mlc-ai/web-llm";
import rehypeStringify from "rehype-stringify";
import remarkFrontmatter from "remark-frontmatter";
import remarkGfm from "remark-gfm";
import RemarkBreaks from "remark-breaks";
import remarkParse from "remark-parse";
import remarkRehype from "remark-rehype";
import RehypeKatex from "rehype-katex";
import { unified } from "unified";
import remarkMath from "remark-math";
import rehypeHighlight from "rehype-highlight";
import { visit } from 'unist-util-visit';
// Add custom plugin to escape <think> tags
function escapeThinkTags() {
return (tree) => {
visit(tree, 'text', (node) => {
node.value = node.value.replace(/<think>/g, '<think>')
.replace(/<\/think>/g, '</think>');
});
};
}
/*************** WebLLM logic ***************/
const messageFormatter = unified()
.use(remarkParse)
.use(remarkFrontmatter)
.use(remarkMath)
.use(remarkGfm)
.use(RemarkBreaks)
.use(remarkRehype, { allowDangerousHtml: true })
.use(escapeThinkTags)
.use(rehypeStringify)
.use(RehypeKatex)
.use(rehypeHighlight, {
detect: true,
ignoreMissing: true,
});
const messages = [
{
content: "You are a helpful AI agent helping users.",
role: "system",
},
];
// Callback function for initializing progress
function updateEngineInitProgressCallback(report) {
console.log("initialize", report.progress);
document.getElementById("download-status").textContent = report.text;
}
// Create engine instance
let modelLoaded = false;
const engine = new webllm.MLCEngine();
engine.setLogLevel("INFO");
engine.setInitProgressCallback(updateEngineInitProgressCallback);
async function initializeWebLLMEngine() {
const model = document.getElementById("model").value;
const quantization = document.getElementById("quantization").value;
const context_window_size = parseInt(document.getElementById("context").value);
const temperature = parseFloat(document.getElementById("temperature").value);
const top_p = parseFloat(document.getElementById("top_p").value);
const presence_penalty = parseFloat(document.getElementById("presence_penalty").value);
const frequency_penalty = parseFloat(document.getElementById("frequency_penalty").value);
document.getElementById("download-status").classList.remove("hidden");
const selectedModel = `DeepSeek-R1-Distill-${model}-${quantization}-MLC`;
const config = {
temperature,
top_p,
frequency_penalty,
presence_penalty,
context_window_size,
};
console.log(`Loading Model: ${selectedModel}`);
console.log(`Config: ${JSON.stringify(config)}`);
await engine.reload(selectedModel, config);
modelLoaded = true;
}
async function streamingGenerating(messages, onUpdate, onFinish, onError) {
try {
let curMessage = "";
let usage;
const completion = await engine.chat.completions.create({
stream: true,
messages,
stream_options: { include_usage: true },
});
for await (const chunk of completion) {
const curDelta = chunk.choices[0]?.delta.content;
if (curDelta) {
curMessage += curDelta;
}
if (chunk.usage) {
usage = chunk.usage;
}
onUpdate(curMessage);
}
const finalMessage = await engine.getMessage();
onFinish(finalMessage, usage);
} catch (err) {
onError(err);
}
}
/*************** UI logic ***************/
function onMessageSend() {
if (!modelLoaded) {
return;
}
const input = document.getElementById("user-input").value.trim();
const message = {
content: input,
role: "user",
};
if (input.length === 0) {
return;
}
document.getElementById("send").disabled = true;
messages.push(message);
appendMessage(message);
document.getElementById("user-input").value = "";
document
.getElementById("user-input")
.setAttribute("placeholder", "Generating...");
const aiMessage = {
content: "typing...",
role: "assistant",
};
appendMessage(aiMessage);
const onFinishGenerating = async (finalMessage, usage) => {
updateLastMessage(finalMessage);
document.getElementById("send").disabled = false;
const usageText =
`prompt_tokens: ${usage.prompt_tokens}, ` +
`completion_tokens: ${usage.completion_tokens}, ` +
`prefill: ${usage.extra.prefill_tokens_per_s.toFixed(4)} tokens/sec, ` +
`decoding: ${usage.extra.decode_tokens_per_s.toFixed(4)} tokens/sec`;
document.getElementById("chat-stats").classList.remove("hidden");
document.getElementById("chat-stats").textContent = usageText;
document
.getElementById("user-input")
.setAttribute("placeholder", "Type a message...");
};
streamingGenerating(
messages,
updateLastMessage,
onFinishGenerating,
console.error
);
}
function appendMessage(message) {
const chatBox = document.getElementById("chat-box");
const container = document.createElement("div");
container.classList.add("message-container");
const newMessage = document.createElement("div");
newMessage.classList.add("message");
newMessage.textContent = message.content;
if (message.role === "user") {
container.classList.add("user");
} else {
container.classList.add("assistant");
}
container.appendChild(newMessage);
chatBox.appendChild(container);
chatBox.scrollTop = chatBox.scrollHeight; // Scroll to the latest message
}
async function updateLastMessage(content) {
const formattedMessage = await messageFormatter.process(content);
const messageDoms = document
.getElementById("chat-box")
.querySelectorAll(".message");
const lastMessageDom = messageDoms[messageDoms.length - 1];
lastMessageDom.innerHTML = formattedMessage;
}
/*************** UI binding ***************/
document.addEventListener('DOMContentLoaded', function() {
document.getElementById("download").addEventListener("click", function () {
document.getElementById("send").disabled = true;
initializeWebLLMEngine().then(() => {
document.getElementById("send").disabled = false;
});
});
document.getElementById("send").addEventListener("click", function () {
onMessageSend();
});
document.getElementById("user-input").addEventListener("keydown", (event) => {
if (event.key === "Enter") {
onMessageSend();
}
});
document.getElementById('model_size').addEventListener('change', function() {
const quantizationSelect = document.getElementById('quantization');
const selectedSize = document.getElementById('model_size').value;
const q0Options = Array.from(quantizationSelect.options).filter(option =>
option.value === 'q0f32' || option.value === 'q0f16'
);
if (selectedSize === '3B') {
q0Options.forEach(option => option.style.display = 'none');
} else {
q0Options.forEach(option => option.style.display = '');
}
if (quantizationSelect.selectedOptions[0].style.display === 'none') {
quantizationSelect.value = quantizationSelect.options[0].value;
}
});
});
window.onload = function () {
document.getElementById("download").textContent = "Download";
document.getElementById("download").disabled = false;
} |