# ML.ENERGY Leaderboard [![Leaderboard](https://custom-icon-badges.herokuapp.com/badge/ML.ENERGY-Leaderboard-blue.svg)](https://ml.energy/leaderboard) [![Deploy](https://github.com/ml-energy/leaderboard/actions/workflows/push_spaces.yaml/badge.svg?branch=web)](https://github.com/ml-energy/leaderboard/actions/workflows/push_spaces.yaml) [![Apache-2.0 License](https://custom-icon-badges.herokuapp.com/github/license/ml-energy/leaderboard?logo=law)](/LICENSE) How much energy do LLMs consume? This README focuses on explaining how to run the benchmark yourself. The actual leaderboard is here: https://ml.energy/leaderboard. ## Setup ### Model weights - For models that are directly accessible in Hugging Face Hub, you don't need to do anything. - For other models, convert them to Hugging Face format and put them in `/data/leaderboard/weights/lmsys/vicuna-13B`, for example. The last two path components (e.g., `lmsys/vicuna-13B`) are taken as the name of the model. ### Docker container ```console $ git clone https://github.com/ml-energy/leaderboard.git $ cd leaderboard $ docker build -t ml-energy:latest . # Replace /data/leaderboard with your data directory. $ docker run -it \ --name leaderboard \ --gpus all \ -v /data/leaderboard:/data/leaderboard \ -v $HOME/workspace/leaderboard:/workspace/leaderboard \ ml-energy:latest bash ``` ## Running the benchmark ```console # Inside the container $ cd /workspace/leaderboard $ python scripts/benchmark.py --model-path /data/leaderboard/weights/lmsys/vicuna-13B --input-file sharegpt/sg_90k_part1_html_cleaned_lang_first_sampled.json $ python scripts/benchmark.py --model-path databricks/dolly-v2-12b --input-file sharegpt/sg_90k_part1_html_cleaned_lang_first_sampled.json ```