FROM nvidia/cuda:11.8.0-base-ubuntu22.04 # Basic installs ARG DEBIAN_FRONTEND=noninteractive ENV TZ='America/Detroit' RUN apt-get update -qq \ && apt-get -y --no-install-recommends install \ build-essential software-properties-common wget git tar rsync ninja-build \ && apt-get clean all \ && rm -r /var/lib/apt/lists/* # Install Miniconda3 23.3.1 ENV PATH="/root/.local/miniconda3/bin:$PATH" RUN mkdir -p /root/.local \ && wget https://repo.anaconda.com/miniconda/Miniconda3-py39_23.3.1-0-Linux-x86_64.sh \ && mkdir /root/.conda \ && bash Miniconda3-py39_23.3.1-0-Linux-x86_64.sh -b -p /root/.local/miniconda3 \ && rm -f Miniconda3-py39_23.3.1-0-Linux-x86_64.sh \ && ln -sf /root/.local/miniconda3/etc/profile.d/conda.sh /etc/profile.d/conda.sh # Install spitfight ADD . /workspace/leaderboard RUN cd /workspace/leaderboard && pip install -e .[benchmark] # Clone lm-evaluation-harness and install RUN cd /workspace \ && git clone https://github.com/EleutherAI/lm-evaluation-harness.git \ && cd lm-evaluation-harness \ && git checkout d1537059b515511801ae9b742f8e949f1bfcd010 \ && rm -r .git \ && pip install -e . # Where all the weights downloaded from Hugging Face Hub will go to ENV TRANSFORMERS_CACHE=/data/leaderboard/hfcache # So that docker exec container python scripts/benchmark.py will work WORKDIR /workspace/leaderboard