import gradio as gr import skimage.feature import numpy as np import imageio.v3 as iio def detect_edges(image:str, sigma, upper_thresh, lower_thresh)->np.ndarray: if lower_thresh>upper_thresh: gr.Warning(message="Lower threshold has to be lower than the upper threshold") image = iio.imread(uri=image, mode="L").astype(np.uint8) edges:np.ndarray = skimage.feature.canny( image=image, sigma=sigma, low_threshold=lower_thresh, high_threshold=upper_thresh, ) return edges*255 edge_detector_interface = gr.Interface( fn=detect_edges, inputs=[ gr.Image(label="Input Image", type='filepath', height=400), gr.Slider(minimum=0, maximum=33, label="Sigma"), gr.Slider(minimum=0, maximum=10, label="Upper Threshold"), gr.Slider(minimum=0, maximum=10, label="Lower Threshold"), ], outputs=[gr.Image(label="Edge Detected Image", image_mode="L", height=400)] ) edge_detector_interface.launch()