modle_change
Browse files
app.py
CHANGED
@@ -1,68 +1,34 @@
|
|
1 |
-
|
2 |
-
|
3 |
import gradio as gr
|
4 |
import easyocr
|
5 |
import pdfplumber
|
6 |
-
import random
|
7 |
-
|
8 |
-
|
9 |
-
import os
|
10 |
-
os.system("rm -rf /home/user/.cache/huggingface")
|
11 |
-
|
12 |
-
|
13 |
-
#適用於Interface、Block
|
14 |
-
title = "<h1>產生英文題目</h1>"
|
15 |
-
description = """這是一個利用hugging face 產生英文題目的小專案"""
|
16 |
-
textbox = gr.Textbox(label="請輸入英文文章:", placeholder="While lily is setting...", lines=5)
|
17 |
-
|
18 |
-
#加入磚
|
19 |
-
demo = gr.Blocks()
|
20 |
-
|
21 |
-
# 加載 Hugging Face 上的問答模型
|
22 |
-
question_generator = pipeline("text2text-generation", model="valhalla/t5-base-qg-hl")
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
# question = question_generator(f"question: {context}",
|
29 |
-
# max_length=100,
|
30 |
-
# do_sample = True, # 啟用採樣以增加多樣性
|
31 |
-
# temperature=0.8 + (i * 0.1), # 逐漸增加溫度參數來獲得更多樣的結果
|
32 |
-
# top_p=0.9
|
33 |
-
# )
|
34 |
-
# question_result.append(f"Q{i+1}. {question[0]['generated_text']}")
|
35 |
|
36 |
-
|
|
|
|
|
|
|
|
|
37 |
|
38 |
def question_generator_with_answer(context):
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
max_length=100, do_sample=True, temperature=0.8, top_p=0.9)
|
43 |
-
question = question_data[0]['generated_text']
|
44 |
-
|
45 |
-
#產生正確答案
|
46 |
-
answer_data = question_generator(f"answer:{context}",
|
47 |
-
max_length=100, do_sample=True, temperature=1, top_p=0.9)
|
48 |
-
correct_answer = answer_data[0]['generated_text']
|
49 |
-
|
50 |
-
#產生錯誤答案
|
51 |
wrong_answers = set()
|
52 |
while len(wrong_answers) < 3:
|
53 |
-
|
54 |
-
|
55 |
-
wrong_answer = wrong_data[0]['generated_text']
|
56 |
-
if wrong_answer != correct_answer and "?" not in wrong_answer: # 避免重複正確答案
|
57 |
wrong_answers.add(wrong_answer)
|
58 |
-
|
59 |
|
60 |
-
# 將正確答案加入選項,並打亂順序
|
61 |
choices = list(wrong_answers) + [correct_answer]
|
62 |
random.shuffle(choices)
|
63 |
-
|
64 |
-
|
65 |
-
# 回傳題目與選項
|
66 |
return {
|
67 |
"question": question,
|
68 |
"choices": choices,
|
@@ -70,114 +36,57 @@ def question_generator_with_answer(context):
|
|
70 |
}
|
71 |
|
72 |
def format_question_output(context):
|
73 |
-
question_result=[]
|
74 |
for j in range(4):
|
75 |
result = question_generator_with_answer(context)
|
76 |
question_text = f"{result['question']}\n"
|
77 |
choices_text = "\n".join([f"{chr(65+i)}. {choice}" for i, choice in enumerate(result['choices'])])
|
78 |
question_result.append(f"\nQ{j+1}.{question_text}\n{choices_text}\n")
|
79 |
-
return "\n".join(question_result)
|
80 |
-
|
81 |
-
# def format_question_output(context):
|
82 |
-
# result = question_generator_with_answer(context)
|
83 |
-
# question_text = f"**{result['question']}**\n\n"
|
84 |
-
# choices_text = "\n".join([f"{chr(65+i)}. {choice}" for i, choice in enumerate(result['choices'])])
|
85 |
-
# return f"{question_text}\n{choices_text}\n\n✅ 正確答案: {result['correct_answer']}"
|
86 |
-
|
87 |
|
88 |
-
#pdf辨識
|
89 |
def extract_text_from_pdf(pdf_path):
|
90 |
text = ""
|
91 |
-
with pdfplumber.open(pdf_path.name) as pdf:
|
92 |
for page in pdf.pages:
|
93 |
text += page.extract_text() + "\n"
|
94 |
-
|
95 |
-
return ls
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
#圖片辨識(辨識度太低)
|
100 |
def OCR(photo):
|
101 |
-
text_inner = ""
|
102 |
-
questions = []
|
103 |
reader = easyocr.Reader(['en', 'ch_tra'])
|
104 |
results = reader.readtext(photo)
|
105 |
-
for (
|
106 |
-
text_inner += text
|
107 |
-
return text_inner
|
108 |
|
109 |
-
|
110 |
-
#確認辨識結果沒有問題後,產生題目
|
111 |
def OCR_gen(text):
|
112 |
-
if not text.strip():
|
113 |
return "錯誤:OCR 沒有輸出任何��用的文字,請重新檢查圖片內容。"
|
114 |
-
|
115 |
-
return ls
|
116 |
-
|
117 |
|
|
|
118 |
with demo:
|
119 |
-
gr.Markdown(
|
120 |
-
gr.Markdown(
|
|
|
121 |
with gr.Tabs():
|
122 |
with gr.TabItem("輸入文字"):
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
text_button = gr.Button("產生題目")
|
128 |
with gr.TabItem("PDF文件辨識"):
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
PDF_button = gr.Button("產生題目")
|
134 |
with gr.TabItem("圖片辨識"):
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
#判別有沒有輸入文章
|
147 |
-
def validate_and_generate(text):
|
148 |
-
if not text.strip():
|
149 |
-
return "請輸入文章以產生題目"
|
150 |
-
return format_question_output(text)
|
151 |
-
|
152 |
-
#文字輸入 物件
|
153 |
-
text_button.click(validate_and_generate, inputs=text_input, outputs=text_output)
|
154 |
-
|
155 |
-
#判別有沒有上傳檔案
|
156 |
-
def test_PDF(file):
|
157 |
-
if not file:
|
158 |
-
return "請上傳PDF文件以產生題目"
|
159 |
-
return extract_text_from_pdf(file)
|
160 |
-
|
161 |
-
#PDF輸入
|
162 |
-
PDF_button.click(test_PDF, inputs=PDF_input, outputs=PDF_output)
|
163 |
-
|
164 |
-
#判別有沒有上傳照片
|
165 |
-
def test_image(image):
|
166 |
-
if image is None:
|
167 |
-
return "請上傳圖片以產生題目"
|
168 |
-
return OCR(image)
|
169 |
-
|
170 |
-
#辨識文章
|
171 |
-
img_button.click(test_image, inputs=image_input, outputs=img_tem)
|
172 |
-
|
173 |
-
|
174 |
-
#檢查辨識結果有沒有存在
|
175 |
-
def test_finished(text):
|
176 |
-
if (not text.strip() or text == "請上傳圖片以產生題目"):
|
177 |
-
return "請確認文章已經輸入"
|
178 |
-
return OCR_gen(text)
|
179 |
-
image_button.click(test_finished, inputs=img_tem, outputs=image_output)
|
180 |
-
|
181 |
-
|
182 |
|
183 |
demo.launch()
|
|
|
1 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
2 |
+
import torch
|
3 |
import gradio as gr
|
4 |
import easyocr
|
5 |
import pdfplumber
|
6 |
+
import random
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
# 載入本地模型與 tokenizer
|
9 |
+
MODEL_PATH = "models/t5-base-qg-hl"
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
11 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_PATH)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
def generate_text(prompt, max_length=100, temperature=0.8, top_p=0.9):
|
14 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
15 |
+
with torch.no_grad():
|
16 |
+
outputs = model.generate(**inputs, max_length=max_length, do_sample=True, temperature=temperature, top_p=top_p)
|
17 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
18 |
|
19 |
def question_generator_with_answer(context):
|
20 |
+
question = generate_text(f"question: {context}")
|
21 |
+
correct_answer = generate_text(f"answer: {context}", temperature=1.0)
|
22 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
wrong_answers = set()
|
24 |
while len(wrong_answers) < 3:
|
25 |
+
wrong_answer = generate_text(f"answer: {context}", max_length=50, temperature=1.0, top_p=0.8)
|
26 |
+
if wrong_answer != correct_answer and "?" not in wrong_answer:
|
|
|
|
|
27 |
wrong_answers.add(wrong_answer)
|
|
|
28 |
|
|
|
29 |
choices = list(wrong_answers) + [correct_answer]
|
30 |
random.shuffle(choices)
|
31 |
+
|
|
|
|
|
32 |
return {
|
33 |
"question": question,
|
34 |
"choices": choices,
|
|
|
36 |
}
|
37 |
|
38 |
def format_question_output(context):
|
39 |
+
question_result = []
|
40 |
for j in range(4):
|
41 |
result = question_generator_with_answer(context)
|
42 |
question_text = f"{result['question']}\n"
|
43 |
choices_text = "\n".join([f"{chr(65+i)}. {choice}" for i, choice in enumerate(result['choices'])])
|
44 |
question_result.append(f"\nQ{j+1}.{question_text}\n{choices_text}\n")
|
45 |
+
return "\n".join(question_result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
|
|
47 |
def extract_text_from_pdf(pdf_path):
|
48 |
text = ""
|
49 |
+
with pdfplumber.open(pdf_path.name) as pdf:
|
50 |
for page in pdf.pages:
|
51 |
text += page.extract_text() + "\n"
|
52 |
+
return format_question_output(text)
|
|
|
53 |
|
|
|
|
|
|
|
54 |
def OCR(photo):
|
|
|
|
|
55 |
reader = easyocr.Reader(['en', 'ch_tra'])
|
56 |
results = reader.readtext(photo)
|
57 |
+
return "".join([text for (_, text, _) in results])
|
|
|
|
|
58 |
|
|
|
|
|
59 |
def OCR_gen(text):
|
60 |
+
if not text.strip():
|
61 |
return "錯誤:OCR 沒有輸出任何��用的文字,請重新檢查圖片內容。"
|
62 |
+
return format_question_output(text)
|
|
|
|
|
63 |
|
64 |
+
demo = gr.Blocks()
|
65 |
with demo:
|
66 |
+
gr.Markdown("<h1>產生英文題目</h1>")
|
67 |
+
gr.Markdown("這是一個利用 hugging face 產生英文題目的小專案")
|
68 |
+
|
69 |
with gr.Tabs():
|
70 |
with gr.TabItem("輸入文字"):
|
71 |
+
text_input = gr.Textbox(label="請輸入英文文章:", placeholder="While lily is setting...", lines=5)
|
72 |
+
text_output = gr.Textbox(label="題目")
|
73 |
+
text_button = gr.Button("產生題目")
|
74 |
+
|
|
|
75 |
with gr.TabItem("PDF文件辨識"):
|
76 |
+
PDF_input = gr.File(label="請上傳PDF文件")
|
77 |
+
PDF_output = gr.Textbox()
|
78 |
+
PDF_button = gr.Button("產生題目")
|
79 |
+
|
|
|
80 |
with gr.TabItem("圖片辨識"):
|
81 |
+
image_input = gr.Image()
|
82 |
+
img_tem = gr.Textbox(placeholder="請確認辨識結果", label="辨識結果")
|
83 |
+
img_button = gr.Button("開始解析")
|
84 |
+
image_button = gr.Button("產生題目")
|
85 |
+
image_output = gr.Textbox(label="題目")
|
86 |
+
|
87 |
+
text_button.click(format_question_output, inputs=text_input, outputs=text_output)
|
88 |
+
PDF_button.click(extract_text_from_pdf, inputs=PDF_input, outputs=PDF_output)
|
89 |
+
img_button.click(OCR, inputs=image_input, outputs=img_tem)
|
90 |
+
image_button.click(OCR_gen, inputs=img_tem, outputs=image_output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
demo.launch()
|