import os import argparse import io from typing import List import pypdfium2 import streamlit as st from surya.detection import batch_text_detection from surya.layout import batch_layout_detection from surya.model.detection.segformer import load_model, load_processor from surya.model.recognition.model import load_model as load_rec_model from surya.model.recognition.processor import load_processor as load_rec_processor from surya.model.ordering.processor import load_processor as load_order_processor from surya.model.ordering.model import load_model as load_order_model from surya.ordering import batch_ordering from surya.postprocessing.heatmap import draw_polys_on_image from surya.ocr import run_ocr from surya.postprocessing.text import draw_text_on_image from PIL import Image from surya.languages import CODE_TO_LANGUAGE from surya.input.langs import replace_lang_with_code from surya.schema import OCRResult, TextDetectionResult, LayoutResult, OrderResult from surya.settings import settings parser = argparse.ArgumentParser(description="Run OCR on an image or PDF.") parser.add_argument("--math", action="store_true", help="Use math model for detection", default=False) try: args = parser.parse_args() except SystemExit as e: print(f"Error parsing arguments: {e}") os._exit(e.code) @st.cache_resource() def load_det_cached(): checkpoint = settings.DETECTOR_MATH_MODEL_CHECKPOINT if args.math else settings.DETECTOR_MODEL_CHECKPOINT return load_model(checkpoint=checkpoint), load_processor(checkpoint=checkpoint) @st.cache_resource() def load_rec_cached(): return load_rec_model(), load_rec_processor() @st.cache_resource() def load_layout_cached(): return load_model(checkpoint=settings.LAYOUT_MODEL_CHECKPOINT), load_processor(checkpoint=settings.LAYOUT_MODEL_CHECKPOINT) @st.cache_resource() def load_order_cached(): return load_order_model(), load_order_processor() def text_detection(img) -> (Image.Image, TextDetectionResult): pred = batch_text_detection([img], det_model, det_processor)[0] polygons = [p.polygon for p in pred.bboxes] det_img = draw_polys_on_image(polygons, img.copy()) return det_img, pred def layout_detection(img) -> (Image.Image, LayoutResult): _, det_pred = text_detection(img) pred = batch_layout_detection([img], layout_model, layout_processor, [det_pred])[0] polygons = [p.polygon for p in pred.bboxes] labels = [p.label for p in pred.bboxes] layout_img = draw_polys_on_image(polygons, img.copy(), labels=labels) return layout_img, pred def order_detection(img) -> (Image.Image, OrderResult): _, layout_pred = layout_detection(img) bboxes = [l.bbox for l in layout_pred.bboxes] pred = batch_ordering([img], [bboxes], order_model, order_processor)[0] polys = [l.polygon for l in pred.bboxes] positions = [str(l.position) for l in pred.bboxes] order_img = draw_polys_on_image(polys, img.copy(), labels=positions, label_font_size=20) return order_img, pred # Function for OCR def ocr(img, langs: List[str]) -> (Image.Image, OCRResult): replace_lang_with_code(langs) img_pred = run_ocr([img], [langs], det_model, det_processor, rec_model, rec_processor)[0] bboxes = [l.bbox for l in img_pred.text_lines] text = [l.text for l in img_pred.text_lines] rec_img = draw_text_on_image(bboxes, text, img.size, langs, has_math="_math" in langs) return rec_img, img_pred def open_pdf(pdf_file): stream = io.BytesIO(pdf_file.getvalue()) return pypdfium2.PdfDocument(stream) @st.cache_data() def get_page_image(pdf_file, page_num, dpi=96): doc = open_pdf(pdf_file) renderer = doc.render( pypdfium2.PdfBitmap.to_pil, page_indices=[page_num - 1], scale=dpi / 72, ) png = list(renderer)[0] png_image = png.convert("RGB") return png_image @st.cache_data() def page_count(pdf_file): doc = open_pdf(pdf_file) return len(doc) st.set_page_config(layout="wide") col1, col2 = st.columns([.5, .5]) det_model, det_processor = load_det_cached() rec_model, rec_processor = load_rec_cached() layout_model, layout_processor = load_layout_cached() order_model, order_processor = load_order_cached() st.markdown(""" # Surya OCR Demo This app will let you try surya, a multilingual OCR model. It supports text detection + layout analysis in any language, and text recognition in 90+ languages. Notes: - This works best on documents with printed text. - Preprocessing the image (e.g. increasing contrast) can improve results. - If OCR doesn't work, try changing the resolution of your image (increase if below 2048px width, otherwise decrease). - This supports 90+ languages, see [here](https://github.com/VikParuchuri/surya/tree/master/surya/languages.py) for a full list. Find the project [here](https://github.com/VikParuchuri/surya). """) in_file = st.sidebar.file_uploader("PDF file or image:", type=["pdf", "png", "jpg", "jpeg", "gif", "webp"]) languages = st.sidebar.multiselect("Languages", sorted(list(CODE_TO_LANGUAGE.values())), default=["English"], max_selections=4) if in_file is None: st.stop() filetype = in_file.type whole_image = False if "pdf" in filetype: page_count = page_count(in_file) page_number = st.sidebar.number_input(f"Page number out of {page_count}:", min_value=1, value=1, max_value=page_count) pil_image = get_page_image(in_file, page_number) else: pil_image = Image.open(in_file).convert("RGB") text_det = st.sidebar.button("Run Text Detection") text_rec = st.sidebar.button("Run OCR") layout_det = st.sidebar.button("Run Layout Analysis") order_det = st.sidebar.button("Run Reading Order") if pil_image is None: st.stop() # Run Text Detection if text_det: det_img, pred = text_detection(pil_image) with col1: st.image(det_img, caption="Detected Text", use_column_width=True) st.json(pred.model_dump(exclude=["heatmap", "affinity_map"]), expanded=True) # Run layout if layout_det: layout_img, pred = layout_detection(pil_image) with col1: st.image(layout_img, caption="Detected Layout", use_column_width=True) st.json(pred.model_dump(exclude=["segmentation_map"]), expanded=True) # Run OCR if text_rec: rec_img, pred = ocr(pil_image, languages) with col1: st.image(rec_img, caption="OCR Result", use_column_width=True) json_tab, text_tab = st.tabs(["JSON", "Text Lines (for debugging)"]) with json_tab: st.json(pred.model_dump(), expanded=True) with text_tab: st.text("\n".join([p.text for p in pred.text_lines])) if order_det: order_img, pred = order_detection(pil_image) with col1: st.image(order_img, caption="Reading Order", use_column_width=True) st.json(pred.model_dump(), expanded=True) with col2: st.image(pil_image, caption="Uploaded Image", use_column_width=True)