Upload summarize.py
Browse files- summarize.py +81 -0
summarize.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from tqdm import tqdm
|
| 3 |
+
|
| 4 |
+
from utils.summarize_utils.summ_utils import count_caps, dupe_check, purpose_issue, route_miss
|
| 5 |
+
|
| 6 |
+
tqdm.pandas()
|
| 7 |
+
|
| 8 |
+
# Warning message configuration
|
| 9 |
+
import logging, sys
|
| 10 |
+
|
| 11 |
+
logging.disable(sys.maxsize)
|
| 12 |
+
import warnings
|
| 13 |
+
|
| 14 |
+
warnings.filterwarnings('ignore')
|
| 15 |
+
|
| 16 |
+
# pwd
|
| 17 |
+
|
| 18 |
+
from utils.summarize_utils.summwrap import get_data, get_summ
|
| 19 |
+
from utils.summarize_utils.headlinewrap import get_headline
|
| 20 |
+
import pandas as pd
|
| 21 |
+
|
| 22 |
+
# import numpy as np
|
| 23 |
+
|
| 24 |
+
pd.set_option('display.max_colwidth', 800)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# study_id_list = [
|
| 28 |
+
# 'NCT04545554'
|
| 29 |
+
# ]
|
| 30 |
+
def get_summary_app(study_id):
|
| 31 |
+
study_id_list = study_id.split(",")
|
| 32 |
+
print(study_id.split(","))
|
| 33 |
+
df = get_data(study_id_list)
|
| 34 |
+
df.head(2)
|
| 35 |
+
df['LastUpdatePostDate'] = pd.to_datetime(df['LastUpdatePostDate']).dt.strftime('%d %b %Y')
|
| 36 |
+
|
| 37 |
+
df['summary'] = df.progress_apply(lambda x: get_summ(
|
| 38 |
+
x['OverallStatus'],
|
| 39 |
+
x['DesignAllocation'],
|
| 40 |
+
x['DesignMasking'],
|
| 41 |
+
x['Phase'],
|
| 42 |
+
x['DesignInterventionModel'],
|
| 43 |
+
x['OrgStudyId'],
|
| 44 |
+
x['SecondaryId'],
|
| 45 |
+
x['LocationCountry'],
|
| 46 |
+
x['EnrollmentCount'],
|
| 47 |
+
x['OfficialTitle'],
|
| 48 |
+
x['BriefSummary'],
|
| 49 |
+
x['DetailedDescription'],
|
| 50 |
+
x['WhyStopped'],
|
| 51 |
+
x['NCTId'],
|
| 52 |
+
x['LastUpdatePostDate']
|
| 53 |
+
),
|
| 54 |
+
axis=1
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
df['headline'] = df.progress_apply(lambda x: get_headline(
|
| 58 |
+
x['OverallStatus'],
|
| 59 |
+
x['Phase'],
|
| 60 |
+
x['OrgStudyId'],
|
| 61 |
+
x['SecondaryId'],
|
| 62 |
+
x['Condition']
|
| 63 |
+
),
|
| 64 |
+
axis=1
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
df['Review_Required'] = df['summary'].apply(lambda summary: purpose_issue(summary))
|
| 68 |
+
df['Review_Required'] = df.apply(lambda row: dupe_check(row['summary'], row['Review_Required']), axis=1)
|
| 69 |
+
df['Review_Required'] = df.apply(lambda row: count_caps(row['summary'], row['Review_Required']), axis=1)
|
| 70 |
+
df['Review_Required'] = df.apply(
|
| 71 |
+
lambda row: route_miss(row['summary'], row['Review_Required'], row['InterventionDescription']), axis=1)
|
| 72 |
+
final_df = df[['NCTId', 'summary', 'Review_Required', 'headline']]
|
| 73 |
+
ids = df['NCTId'].to_markdown()
|
| 74 |
+
summary_output = df['summary'].to_markdown()
|
| 75 |
+
headline_output = df['headline'].to_markdown()
|
| 76 |
+
|
| 77 |
+
return headline_output, summary_output
|
| 78 |
+
# df[['OverallStatus','Phase','OrgStudyId','SecondaryId','Condition','headline']]
|
| 79 |
+
|
| 80 |
+
# df.head()
|
| 81 |
+
# df.to_csv('summary_output_sample.csv',index=False, encoding='UTF-8')
|