import os os.system('pip install pyyaml==5.1') # workaround: install old version of pytorch since detectron2 hasn't released packages for pytorch 1.9 (issue: https://github.com/facebookresearch/detectron2/issues/3158) os.system('pip install torch==1.8.0+cu101 torchvision==0.9.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html') # install detectron2 that matches pytorch 1.8 # See https://detectron2.readthedocs.io/tutorials/install.html for instructions os.system('pip install -q detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.8/index.html') ## install PyTesseract os.system('pip install -q pytesseract') import gradio as gr import numpy as np from transformers import LayoutLMv2Processor, LayoutLMv2ForTokenClassification from datasets import load_dataset from PIL import Image, ImageDraw, ImageFont processor = LayoutLMv2Processor.from_pretrained("microsoft/layoutlmv2-base-uncased") model = LayoutLMv2ForTokenClassification.from_pretrained("nielsr/layoutlmv2-finetuned-funsd") #model = LayoutLMv2ForTokenClassification.from_pretrained("mishtert/iec") # load image example dataset = load_dataset("nielsr/funsd", split="test") #dataset = load_dataset("mishtert/niefunsd", split="test") image = Image.open(dataset[0]["image_path"]).convert("RGB") image = Image.open("./invoice.png") image.save("document.png") Image.open("./invoice2.png").convert("RGB").save("document1.png") Image.open("./invoice3.png").convert("RGB").save("document2.png") # define id2label, label2color labels = dataset.features['ner_tags'].feature.names id2label = {v: k for v, k in enumerate(labels)} label2color = {'question':'blue', 'answer':'green', 'header':'orange', 'other':'violet'} def unnormalize_box(bbox, width, height): return [ width * (bbox[0] / 1000), height * (bbox[1] / 1000), width * (bbox[2] / 1000), height * (bbox[3] / 1000), ] def iob_to_label(label): label = label[2:] if not label: return 'other' return label def process_image(image): width, height = image.size # encode encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt") offset_mapping = encoding.pop('offset_mapping') # forward pass outputs = model(**encoding) # get predictions predictions = outputs.logits.argmax(-1).squeeze().tolist() token_boxes = encoding.bbox.squeeze().tolist() # only keep non-subword predictions is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0 true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]] true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]] # draw predictions over the image draw = ImageDraw.Draw(image) font = ImageFont.load_default() for prediction, box in zip(true_predictions, true_boxes): predicted_label = iob_to_label(prediction).lower() draw.rectangle(box, outline=label2color[predicted_label]) draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font) return image title = "Invoice Extraction & Categorization" description = "Invoice text identified (extraction) and categorized." #examples =[['document.png']] examples =[['document.png'],['invoice2.png'],['invoice3.png']] css = ".output-image, .input-image {height: 40rem !important; width: 100% !important;}" #css = "@media screen and (max-width: 600px) { .output_image, .input_image {height:20rem !important; width: 100% !important;} }" # css = ".output_image, .input_image {height: 600px !important}" css = ".image-preview {height: auto !important;}" iface = gr.Interface(fn=process_image, inputs=gr.inputs.Image(type="pil"), outputs= gr.outputs.Image(type="pil", label="Identified & Categorized Image"), # outputs= [gr.outputs.Image(type="pil", label="Identified & Categorized Image"), # gr.outputs.Textbox(type="text", label="Identified & Categorized Image")], title=title, description=description, # article=article, examples=examples, css=css, enable_queue=True) iface.launch(debug=False)