|
import os |
|
os.system('pip install pyyaml==5.1') |
|
|
|
os.system('pip install torch==1.8.0+cu101 torchvision==0.9.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html') |
|
|
|
|
|
|
|
os.system('pip install -q detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.8/index.html') |
|
|
|
|
|
os.system('pip install -q pytesseract') |
|
|
|
import gradio as gr |
|
import numpy as np |
|
from transformers import LayoutLMv2Processor, LayoutLMv2ForTokenClassification |
|
from datasets import load_dataset |
|
from PIL import Image, ImageDraw, ImageFont |
|
|
|
processor = LayoutLMv2Processor.from_pretrained("microsoft/layoutlmv2-base-uncased") |
|
|
|
model = LayoutLMv2ForTokenClassification.from_pretrained("Mishtert/Invoice_extraction_categorization") |
|
|
|
|
|
|
|
dataset = load_dataset("Mishtert/niefunsd", split="test") |
|
image = Image.open(dataset[0]["image_path"]).convert("RGB") |
|
image = Image.open("./invoice.png") |
|
image.save("document.png") |
|
|
|
labels = dataset.features['ner_tags'].feature.names |
|
id2label = {v: k for v, k in enumerate(labels)} |
|
label2color = {'question':'blue', 'answer':'green', 'header':'orange', 'other':'violet'} |
|
|
|
def unnormalize_box(bbox, width, height): |
|
return [ |
|
width * (bbox[0] / 1000), |
|
height * (bbox[1] / 1000), |
|
width * (bbox[2] / 1000), |
|
height * (bbox[3] / 1000), |
|
] |
|
|
|
def iob_to_label(label): |
|
label = label[2:] |
|
if not label: |
|
return 'other' |
|
return label |
|
|
|
def process_image(image): |
|
width, height = image.size |
|
|
|
|
|
encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt") |
|
offset_mapping = encoding.pop('offset_mapping') |
|
|
|
|
|
outputs = model(**encoding) |
|
|
|
|
|
predictions = outputs.logits.argmax(-1).squeeze().tolist() |
|
token_boxes = encoding.bbox.squeeze().tolist() |
|
|
|
|
|
is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0 |
|
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]] |
|
true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]] |
|
|
|
|
|
draw = ImageDraw.Draw(image) |
|
font = ImageFont.load_default() |
|
for prediction, box in zip(true_predictions, true_boxes): |
|
predicted_label = iob_to_label(prediction).lower() |
|
draw.rectangle(box, outline=label2color[predicted_label]) |
|
draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font) |
|
|
|
return image |
|
|
|
|
|
title = "Interactive demo: Invoice Extraction & Categorization" |
|
description = "Text extracted and annotated QUESTION/ANSWER/HEADER/OTHER. |
|
|
|
examples =[['document.png']] |
|
|
|
css = ".output-image, .input-image {height: 40rem !important; width: 100% !important;}" |
|
#css = "@media screen and (max-width: 600px) { .output_image, .input_image {height:20rem !important; width: 100% !important;} }" |
|
# css = ".output_image, .input_image {height: 600px !important}" |
|
|
|
css = ".image-preview {height: auto !important;}" |
|
|
|
iface = gr.Interface(fn=process_image, |
|
inputs=gr.inputs.Image(type="pil"), |
|
outputs=gr.outputs.Image(type="pil", label="annotated image"), |
|
title=title, |
|
description=description, |
|
article=article, |
|
examples=examples, |
|
css=css, |
|
enable_queue=True) |
|
iface.launch(debug=True) |