Spaces:
Runtime error
Runtime error
Commit
·
c3cb17c
1
Parent(s):
fbe6e07
Upload initial test
Browse files
app.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""ABSTRACTGEN_ES FINAL.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1XdfeMcdDbRuRmOGGiOmkiCP9Yih5JXyF
|
8 |
+
|
9 |
+
# installs
|
10 |
+
"""
|
11 |
+
|
12 |
+
! pip install gpt_2_simple
|
13 |
+
! pip install tensorflow-estimator==1.15.1
|
14 |
+
! pip install gradio
|
15 |
+
! pip install huggingface_hub
|
16 |
+
! pip install easynmt
|
17 |
+
! pip install -U sentence-transformers
|
18 |
+
|
19 |
+
!curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash
|
20 |
+
!sudo apt-get install git-lfs
|
21 |
+
|
22 |
+
!git lfs install
|
23 |
+
!git clone https://huggingface.co/franz96521/AbstractGeneratorES
|
24 |
+
|
25 |
+
# Commented out IPython magic to ensure Python compatibility.
|
26 |
+
# %cd '/content/AbstractGeneratorES'
|
27 |
+
|
28 |
+
"""# Init"""
|
29 |
+
|
30 |
+
import gpt_2_simple as gpt2
|
31 |
+
import os
|
32 |
+
import tensorflow as tf
|
33 |
+
import pandas as pd
|
34 |
+
import re
|
35 |
+
|
36 |
+
model_name = "124M"
|
37 |
+
if not os.path.isdir(os.path.join("models", model_name)):
|
38 |
+
print(f"Downloading {model_name} model...")
|
39 |
+
gpt2.download_gpt2(model_name=model_name)
|
40 |
+
|
41 |
+
path = 'AbstractGenerator/'
|
42 |
+
checkpoint_dir =path+'weights/'
|
43 |
+
data_path = path+'TrainigData/'
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
file_name_en = 'en'
|
48 |
+
file_path_en = data_path+file_name_en
|
49 |
+
|
50 |
+
file_name_es = 'es'
|
51 |
+
file_path_es = data_path+file_name_es
|
52 |
+
|
53 |
+
|
54 |
+
prefix= '<|startoftext|>'
|
55 |
+
sufix ='<|endoftext|>'
|
56 |
+
|
57 |
+
import gradio as gr
|
58 |
+
import random
|
59 |
+
from easynmt import EasyNMT
|
60 |
+
|
61 |
+
from sentence_transformers import SentenceTransformer, util
|
62 |
+
|
63 |
+
def generateAbstract(text):
|
64 |
+
tf.compat.v1.reset_default_graph()
|
65 |
+
sess = gpt2.start_tf_sess()
|
66 |
+
gpt2.load_gpt2(sess,checkpoint_dir=checkpoint_dir,run_name='run1')
|
67 |
+
txt = gpt2.generate(sess,prefix=str(text)+"\nABSTRACT", return_as_list=True,truncate=sufix,checkpoint_dir=checkpoint_dir,nsamples=1)[0]
|
68 |
+
return txt
|
69 |
+
def removeAbstract(text):
|
70 |
+
p = text.find("Introducción")
|
71 |
+
p2 = text.find("INTRODUCCIÓN")
|
72 |
+
print(p,p2)
|
73 |
+
if(p != -1):
|
74 |
+
return (text[:p] , text[p:] )
|
75 |
+
if(p2 != -1):
|
76 |
+
return (text[:p2] , text[p2:] )
|
77 |
+
|
78 |
+
def generated_similarity(type_of_input, cn_text):
|
79 |
+
if(type_of_input == "English"):
|
80 |
+
tf.compat.v1.reset_default_graph()
|
81 |
+
model2 = EasyNMT('opus-mt')
|
82 |
+
cn_text = model2.translate(cn_text, target_lang='es')
|
83 |
+
|
84 |
+
|
85 |
+
print(cn_text)
|
86 |
+
abstract_original , body = removeAbstract(cn_text)
|
87 |
+
tf.compat.v1.reset_default_graph()
|
88 |
+
|
89 |
+
generated_Abstract = generateAbstract(body)
|
90 |
+
|
91 |
+
sentences = [abstract_original, generated_Abstract]
|
92 |
+
|
93 |
+
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
94 |
+
|
95 |
+
#Compute embedding for both lists
|
96 |
+
embedding_1= model.encode(sentences[0], convert_to_tensor=True)
|
97 |
+
embedding_2 = model.encode(sentences[1], convert_to_tensor=True)
|
98 |
+
|
99 |
+
generated_similarity = util.pytorch_cos_sim(embedding_1, embedding_2)
|
100 |
+
## tensor([[0.6003]])
|
101 |
+
return f'''TEXTO SIN ABSTRACT\n
|
102 |
+
{body}\n
|
103 |
+
ABSTRACT ORIGINAL\n
|
104 |
+
{abstract_original}\n
|
105 |
+
ABSTRACT GENERADO\n
|
106 |
+
{generated_Abstract}\n
|
107 |
+
SIMILARIDAD DE ABSTRACT: {float(round(generated_similarity.item()*100, 3))}%
|
108 |
+
'''
|
109 |
+
elif type_of_input == "Spanish":
|
110 |
+
abstract_original , body = removeAbstract(cn_text)
|
111 |
+
tf.compat.v1.reset_default_graph()
|
112 |
+
|
113 |
+
generated_Abstract = generateAbstract(body)
|
114 |
+
|
115 |
+
sentences = [abstract_original, generated_Abstract]
|
116 |
+
|
117 |
+
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
118 |
+
|
119 |
+
#Compute embedding for both lists
|
120 |
+
embedding_1= model.encode(sentences[0], convert_to_tensor=True)
|
121 |
+
embedding_2 = model.encode(sentences[1], convert_to_tensor=True)
|
122 |
+
|
123 |
+
generated_similarity = util.pytorch_cos_sim(embedding_1, embedding_2)
|
124 |
+
return f'''TEXTO SIN ABSTRACT\n
|
125 |
+
{body}\n
|
126 |
+
ABSTRACT ORIGINAL\n
|
127 |
+
{abstract_original}\n
|
128 |
+
ABSTRACT GENERADO\n
|
129 |
+
{generated_Abstract}\n
|
130 |
+
SIMILARIDAD DE ABSTRACT: {float(round(generated_similarity.item()*100, 3))}%
|
131 |
+
'''
|
132 |
+
def generated_abstract(type_of_input, cn_text):
|
133 |
+
if type_of_input == "English":
|
134 |
+
tf.compat.v1.reset_default_graph()
|
135 |
+
model2 = EasyNMT('opus-mt')
|
136 |
+
cn_text = model2.translate(cn_text, target_lang='es')
|
137 |
+
generated_Abstract = generateAbstract(cn_text)
|
138 |
+
return f'''TEXTO SIN ABSTRACT\n
|
139 |
+
{cn_text}\n
|
140 |
+
ABSTRACT GENERADO\n
|
141 |
+
{generated_Abstract}\n
|
142 |
+
'''
|
143 |
+
elif type_of_input == "Spanish":
|
144 |
+
tf.compat.v1.reset_default_graph()
|
145 |
+
generated_Abstract = generateAbstract(cn_text)
|
146 |
+
return f'''TEXTO SIN ABSTRACT\n
|
147 |
+
{cn_text}\n
|
148 |
+
ABSTRACT GENERADO\n
|
149 |
+
{generated_Abstract}\n
|
150 |
+
'''
|
151 |
+
|
152 |
+
block = gr.Blocks(theme="dark")
|
153 |
+
|
154 |
+
with block:
|
155 |
+
with gr.Tab("Full text and text similarity"):
|
156 |
+
type_of_input = gr.inputs.Radio(["English", "Spanish"], label="Input Language")
|
157 |
+
with gr.Row():
|
158 |
+
cn_text = gr.inputs.Textbox(placeholder="Full text", lines=7)
|
159 |
+
with gr.Row():
|
160 |
+
cn_results1 = gr.outputs.Textbox(label="Abstract generado")
|
161 |
+
cn_run = gr.Button("Run")
|
162 |
+
cn_run.click(generated_similarity, inputs=[type_of_input, cn_text], outputs=[cn_results1])
|
163 |
+
|
164 |
+
with gr.Tab("Only text with no abstract"):
|
165 |
+
gr.Markdown("Choose the disease(s) to predict:")
|
166 |
+
type_of_input = gr.inputs.Radio(["English", "Spanish"], label="Input Language")
|
167 |
+
with gr.Row():
|
168 |
+
cn_text = gr.inputs.Textbox(placeholder="Text without abstract", lines=7)
|
169 |
+
with gr.Row():
|
170 |
+
cn_results1 = gr.outputs.Textbox(label="Abstract generado")
|
171 |
+
cn_run = gr.Button("Run")
|
172 |
+
cn_run.click(generated_abstract, inputs=[type_of_input, cn_text], outputs=cn_results1)
|
173 |
+
|
174 |
+
block.launch(debug = True)
|