Spaces:
Sleeping
Sleeping
t5 model get func
Browse files
app.py
CHANGED
@@ -8,12 +8,19 @@ from PIL import Image
|
|
8 |
|
9 |
|
10 |
@st.cache(hash_funcs={tokenizers.Tokenizer: lambda _: None, tokenizers.AddedToken: lambda _: None, re.Pattern: lambda _: None}, allow_output_mutation=True, suppress_st_warning=True)
|
11 |
-
def
|
12 |
tokenizer = transformers.GPT2Tokenizer.from_pretrained(model_name)
|
13 |
model = transformers.GPT2LMHeadModel.from_pretrained(model_name)
|
14 |
model.eval()
|
15 |
return model, tokenizer
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
def predict_gpt(text, model, tokenizer, temperature):
|
19 |
input_ids = tokenizer.encode(text, return_tensors="pt")
|
@@ -54,10 +61,8 @@ def predict_t5(text, model, tokenizer, temperature):
|
|
54 |
generated_text = list(map(decode, out['sequences']))[0]
|
55 |
return generated_text
|
56 |
|
57 |
-
gpt_model, gpt_tokenizer =
|
58 |
-
t5_model, t5_tokenizer =
|
59 |
-
|
60 |
-
# st.title("NeuroKorzh")
|
61 |
|
62 |
|
63 |
option = st.selectbox('Выберите модель', ('GPT', 'T5'))
|
|
|
8 |
|
9 |
|
10 |
@st.cache(hash_funcs={tokenizers.Tokenizer: lambda _: None, tokenizers.AddedToken: lambda _: None, re.Pattern: lambda _: None}, allow_output_mutation=True, suppress_st_warning=True)
|
11 |
+
def get_model_gpt(model_name):
|
12 |
tokenizer = transformers.GPT2Tokenizer.from_pretrained(model_name)
|
13 |
model = transformers.GPT2LMHeadModel.from_pretrained(model_name)
|
14 |
model.eval()
|
15 |
return model, tokenizer
|
16 |
|
17 |
+
@st.cache(hash_funcs={tokenizers.Tokenizer: lambda _: None, tokenizers.AddedToken: lambda _: None, re.Pattern: lambda _: None}, allow_output_mutation=True, suppress_st_warning=True)
|
18 |
+
def get_model_t5(model_name):
|
19 |
+
tokenizer = transformers.T5Tokenizer.from_pretrained(model_name)
|
20 |
+
model = transformers.T5ForConditionalGeneration.from_pretrained(model_name)
|
21 |
+
model.eval()
|
22 |
+
return model, tokenizer
|
23 |
+
|
24 |
|
25 |
def predict_gpt(text, model, tokenizer, temperature):
|
26 |
input_ids = tokenizer.encode(text, return_tensors="pt")
|
|
|
61 |
generated_text = list(map(decode, out['sequences']))[0]
|
62 |
return generated_text
|
63 |
|
64 |
+
gpt_model, gpt_tokenizer = get_model_gpt('mipatov/rugpt3_nb_descr', 'mipatov/rugpt3_nb_descr')
|
65 |
+
t5_model, t5_tokenizer = get_model_t5('mipatov/rut5_nb_descr', 'mipatov/rut5_nb_descr')
|
|
|
|
|
66 |
|
67 |
|
68 |
option = st.selectbox('Выберите модель', ('GPT', 'T5'))
|