import warnings warnings.filterwarnings("ignore", category=UserWarning) import argparse import os import os.path as osp import mmcv import torch from mmcv import DictAction from mmcv.parallel import MMDataParallel, MMDistributedDataParallel from mmcv.runner import (get_dist_info, init_dist, load_checkpoint, wrap_fp16_model) from mogen.apis import multi_gpu_test, single_gpu_test from mogen.datasets import build_dataloader, build_dataset from mogen.models import build_architecture def parse_args(): parser = argparse.ArgumentParser(description='mogen evaluation') parser.add_argument('config', help='test config file path') parser.add_argument('--work-dir', help='the dir to save evaluation results') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument('--out', help='output result file') parser.add_argument('--gpu_collect', action='store_true', help='whether to use gpu to collect results') parser.add_argument('--tmpdir', help='tmp dir for writing some results') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file.') parser.add_argument('--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) parser.add_argument('--device', choices=['cpu', 'cuda'], default='cuda', help='device used for testing') args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) return args def main(): args = parse_args() cfg = mmcv.Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True cfg.data.test.test_mode = True # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # build the dataloader dataset = build_dataset(cfg.data.test) # the extra round_up data will be removed during gpu/cpu collect data_loader = build_dataloader(dataset, samples_per_gpu=cfg.data.samples_per_gpu, workers_per_gpu=cfg.data.workers_per_gpu, dist=distributed, shuffle=False, round_up=False) # build the model and load checkpoint model = build_architecture(cfg.model) fp16_cfg = cfg.get('fp16', None) if fp16_cfg is not None: wrap_fp16_model(model) load_checkpoint(model, args.checkpoint, map_location='cpu') if not distributed: if args.device == 'cpu': model = model.cpu() else: model = MMDataParallel(model, device_ids=[0]) outputs = single_gpu_test(model, data_loader) else: model = MMDistributedDataParallel( model.cuda(), device_ids=[torch.cuda.current_device()], broadcast_buffers=False) outputs = multi_gpu_test(model, data_loader, args.tmpdir, args.gpu_collect) rank, _ = get_dist_info() if rank == 0: mmcv.mkdir_or_exist(osp.abspath(args.work_dir)) results = dataset.evaluate(outputs, args.work_dir) for k, v in results.items(): print(f'\n{k} : {v:.4f}') if args.out and rank == 0: print(f'\nwriting results to {args.out}') mmcv.dump(results, args.out) if __name__ == '__main__': main()