import math import numpy as np import torch import torch.nn as nn class SinusoidalPositionalEncoding(nn.Module): def __init__(self, d_model, dropout=0.1, max_len=5000): super(SinusoidalPositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.arange(0, d_model, 2).float() div_term = div_term * (-np.log(10000.0) / d_model) div_term = torch.exp(div_term) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0, 1) # T, 1, D self.register_buffer('pe', pe) def forward(self, x): x = x + self.pe[:x.shape[0]] return self.dropout(x) class LearnedPositionalEncoding(nn.Module): def __init__(self, d_model, dropout=0.1, max_len=5000): super(LearnedPositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) self.pe = nn.Parameter(torch.randn(max_len, 1, d_model)) def forward(self, x): x = x + self.pe[:x.shape[0]] return self.dropout(x) def timestep_embedding(timesteps, dim, max_period=10000): """ Create sinusoidal timestep embeddings. :param timesteps: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an [N x dim] Tensor of positional embeddings. """ half = dim // 2 idx = torch.arange(start=0, end=half, dtype=torch.float32) freqs = torch.exp(-math.log(max_period) * idx / half).to(device=timesteps.device) args = timesteps[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat( [embedding, torch.zeros_like(embedding[:, :1])], dim=-1) return embedding