|
from collections import OrderedDict |
|
|
|
import torch.distributed as dist |
|
from mmcv.runner import OptimizerHook |
|
from torch._utils import (_flatten_dense_tensors, _take_tensors, |
|
_unflatten_dense_tensors) |
|
|
|
|
|
def _allreduce_coalesced(tensors, world_size, bucket_size_mb=-1): |
|
if bucket_size_mb > 0: |
|
bucket_size_bytes = bucket_size_mb * 1024 * 1024 |
|
buckets = _take_tensors(tensors, bucket_size_bytes) |
|
else: |
|
buckets = OrderedDict() |
|
for tensor in tensors: |
|
tp = tensor.type() |
|
if tp not in buckets: |
|
buckets[tp] = [] |
|
buckets[tp].append(tensor) |
|
buckets = buckets.values() |
|
|
|
for bucket in buckets: |
|
flat_tensors = _flatten_dense_tensors(bucket) |
|
dist.all_reduce(flat_tensors) |
|
flat_tensors.div_(world_size) |
|
for tensor, synced in zip( |
|
bucket, _unflatten_dense_tensors(flat_tensors, bucket)): |
|
tensor.copy_(synced) |
|
|
|
|
|
def allreduce_grads(params, coalesce=True, bucket_size_mb=-1): |
|
grads = [ |
|
param.grad.data for param in params |
|
if param.requires_grad and param.grad is not None |
|
] |
|
world_size = dist.get_world_size() |
|
if coalesce: |
|
_allreduce_coalesced(grads, world_size, bucket_size_mb) |
|
else: |
|
for tensor in grads: |
|
dist.all_reduce(tensor.div_(world_size)) |
|
|
|
|
|
class DistOptimizerHook(OptimizerHook): |
|
|
|
def __init__(self, grad_clip=None, coalesce=True, bucket_size_mb=-1): |
|
self.grad_clip = grad_clip |
|
self.coalesce = coalesce |
|
self.bucket_size_mb = bucket_size_mb |
|
|
|
def after_train_iter(self, runner): |
|
runner.optimizer.zero_grad() |
|
runner.outputs['loss'].backward() |
|
if self.grad_clip is not None: |
|
self.clip_grads(runner.model.parameters()) |
|
runner.optimizer.step() |
|
|