File size: 14,657 Bytes
373af33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
# -*- coding: utf-8 -*-
#
# Copyright (C) 2019 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG),
# acting on behalf of its Max Planck Institute for Intelligent Systems and the
# Max Planck Institute for Biological Cybernetics. All rights reserved.
#
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is holder of all proprietary rights
# on this computer program. You can only use this computer program if you have closed a license agreement
# with MPG or you get the right to use the computer program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and liable to prosecution.
# Contact: [email protected]
#
#
# If you use this code in a research publication please consider citing the following:
#
# Expressive Body Capture: 3D Hands, Face, and Body from a Single Image <https://arxiv.org/abs/1904.05866>
#
#
# Code Developed by:
# Nima Ghorbani <https://nghorbani.github.io/>
#
# 2020.12.12
# from pytorch_lightning import Trainer
import glob
import os
import os.path as osp
from datetime import datetime as dt
from pytorch_lightning.plugins import DDPPlugin
import numpy as np
import pytorch_lightning as pl
import torch
from human_body_prior.body_model.body_model import BodyModel
from human_body_prior.data.dataloader import VPoserDS
from human_body_prior.data.prepare_data import dataset_exists
from human_body_prior.data.prepare_data import prepare_vposer_datasets
from human_body_prior.models.vposer_model import VPoser
from human_body_prior.tools.angle_continuous_repres import geodesic_loss_R
from human_body_prior.tools.configurations import load_config, dump_config
from human_body_prior.tools.omni_tools import copy2cpu as c2c
from human_body_prior.tools.omni_tools import get_support_data_dir
from human_body_prior.tools.omni_tools import log2file
from human_body_prior.tools.omni_tools import make_deterministic
from human_body_prior.tools.omni_tools import makepath
from human_body_prior.tools.rotation_tools import aa2matrot
from human_body_prior.visualizations.training_visualization import vposer_trainer_renderer
from pytorch_lightning.callbacks import LearningRateMonitor
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint
from pytorch_lightning.core import LightningModule
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.utilities import rank_zero_only
from torch import optim as optim_module
from torch.optim import lr_scheduler as lr_sched_module
from torch.utils.data import DataLoader
class VPoserTrainer(LightningModule):
"""
It includes all data loading and train / val logic., and it is used for both training and testing models.
"""
def __init__(self, _config):
super(VPoserTrainer, self).__init__()
_support_data_dir = get_support_data_dir()
vp_ps = load_config(**_config)
make_deterministic(vp_ps.general.rnd_seed)
self.expr_id = vp_ps.general.expr_id
self.dataset_id = vp_ps.general.dataset_id
self.work_dir = vp_ps.logging.work_dir = makepath(vp_ps.general.work_basedir, self.expr_id)
self.dataset_dir = vp_ps.logging.dataset_dir = osp.join(vp_ps.general.dataset_basedir, vp_ps.general.dataset_id)
self._log_prefix = '[{}]'.format(self.expr_id)
self.text_logger = log2file(prefix=self._log_prefix)
self.seq_len = vp_ps.data_parms.num_timeseq_frames
self.vp_model = VPoser(vp_ps)
with torch.no_grad():
self.bm_train = BodyModel(vp_ps.body_model.bm_fname)
if vp_ps.logging.render_during_training:
self.renderer = vposer_trainer_renderer(self.bm_train, vp_ps.logging.num_bodies_to_display)
else:
self.renderer = None
self.example_input_array = {'pose_body':torch.ones(vp_ps.train_parms.batch_size, 63),}
self.vp_ps = vp_ps
def forward(self, pose_body):
return self.vp_model(pose_body)
def _get_data(self, split_name):
assert split_name in ('train', 'vald', 'test')
split_name = split_name.replace('vald', 'vald')
assert dataset_exists(self.dataset_dir), FileNotFoundError('Dataset does not exist dataset_dir = {}'.format(self.dataset_dir))
dataset = VPoserDS(osp.join(self.dataset_dir, split_name), data_fields = ['pose_body'])
assert len(dataset) != 0, ValueError('Dataset has nothing in it!')
return DataLoader(dataset,
batch_size=self.vp_ps.train_parms.batch_size,
shuffle=True if split_name == 'train' else False,
num_workers=self.vp_ps.data_parms.num_workers,
pin_memory=True)
@rank_zero_only
def on_train_start(self):
if self.global_rank != 0: return
self.train_starttime = dt.now().replace(microsecond=0)
######## make a backup of vposer
git_repo_dir = os.path.abspath(__file__).split('/')
git_repo_dir = '/'.join(git_repo_dir[:git_repo_dir.index('human_body_prior') + 1])
starttime = dt.strftime(self.train_starttime, '%Y_%m_%d_%H_%M_%S')
archive_path = makepath(self.work_dir, 'code', 'vposer_{}.tar.gz'.format(starttime), isfile=True)
cmd = 'cd %s && git ls-files -z | xargs -0 tar -czf %s' % (git_repo_dir, archive_path)
os.system(cmd)
########
self.text_logger('Created a git archive backup at {}'.format(archive_path))
dump_config(self.vp_ps, osp.join(self.work_dir, '{}.yaml'.format(self.expr_id)))
def train_dataloader(self):
return self._get_data('train')
def val_dataloader(self):
return self._get_data('vald')
def configure_optimizers(self):
params_count = lambda params: sum(p.numel() for p in params if p.requires_grad)
gen_params = [a[1] for a in self.vp_model.named_parameters() if a[1].requires_grad]
gen_optimizer_class = getattr(optim_module, self.vp_ps.train_parms.gen_optimizer.type)
gen_optimizer = gen_optimizer_class(gen_params, **self.vp_ps.train_parms.gen_optimizer.args)
self.text_logger('Total Trainable Parameters Count in vp_model is %2.2f M.' % (params_count(gen_params) * 1e-6))
lr_sched_class = getattr(lr_sched_module, self.vp_ps.train_parms.lr_scheduler.type)
gen_lr_scheduler = lr_sched_class(gen_optimizer, **self.vp_ps.train_parms.lr_scheduler.args)
schedulers = [
{
'scheduler': gen_lr_scheduler,
'monitor': 'val_loss',
'interval': 'epoch',
'frequency': 1
},
]
return [gen_optimizer], schedulers
def _compute_loss(self, dorig, drec):
l1_loss = torch.nn.L1Loss(reduction='mean')
geodesic_loss = geodesic_loss_R(reduction='mean')
bs, latentD = drec['poZ_body_mean'].shape
device = drec['poZ_body_mean'].device
loss_kl_wt = self.vp_ps.train_parms.loss_weights.loss_kl_wt
loss_rec_wt = self.vp_ps.train_parms.loss_weights.loss_rec_wt
loss_matrot_wt = self.vp_ps.train_parms.loss_weights.loss_matrot_wt
loss_jtr_wt = self.vp_ps.train_parms.loss_weights.loss_jtr_wt
# q_z = torch.distributions.normal.Normal(drec['mean'], drec['std'])
q_z = drec['q_z']
# dorig['fullpose'] = torch.cat([dorig['root_orient'], dorig['pose_body']], dim=-1)
# Reconstruction loss - L1 on the output mesh
with torch.no_grad():
bm_orig = self.bm_train(pose_body=dorig['pose_body'])
bm_rec = self.bm_train(pose_body=drec['pose_body'].contiguous().view(bs, -1))
v2v = l1_loss(bm_rec.v, bm_orig.v)
# KL loss
p_z = torch.distributions.normal.Normal(
loc=torch.zeros((bs, latentD), device=device, requires_grad=False),
scale=torch.ones((bs, latentD), device=device, requires_grad=False))
weighted_loss_dict = {
'loss_kl':loss_kl_wt * torch.mean(torch.sum(torch.distributions.kl.kl_divergence(q_z, p_z), dim=[1])),
'loss_mesh_rec': loss_rec_wt * v2v
}
if (self.current_epoch < self.vp_ps.train_parms.keep_extra_loss_terms_until_epoch):
# breakpoint()
weighted_loss_dict['matrot'] = loss_matrot_wt * geodesic_loss(drec['pose_body_matrot'].view(-1,3,3), aa2matrot(dorig['pose_body'].view(-1, 3)))
weighted_loss_dict['jtr'] = loss_jtr_wt * l1_loss(bm_rec.Jtr, bm_orig.Jtr)
weighted_loss_dict['loss_total'] = torch.stack(list(weighted_loss_dict.values())).sum()
with torch.no_grad():
unweighted_loss_dict = {'v2v': torch.sqrt(torch.pow(bm_rec.v-bm_orig.v, 2).sum(-1)).mean()}
unweighted_loss_dict['loss_total'] = torch.cat(
list({k: v.view(-1) for k, v in unweighted_loss_dict.items()}.values()), dim=-1).sum().view(1)
return {'weighted_loss': weighted_loss_dict, 'unweighted_loss': unweighted_loss_dict}
def training_step(self, batch, batch_idx, optimizer_idx=None):
drec = self(batch['pose_body'].view(-1, 63))
loss = self._compute_loss(batch, drec)
train_loss = loss['weighted_loss']['loss_total']
tensorboard_logs = {'train_loss': train_loss}
progress_bar = {k: c2c(v) for k, v in loss['weighted_loss'].items()}
return {'loss': train_loss, 'progress_bar':progress_bar, 'log': tensorboard_logs}
def validation_step(self, batch, batch_idx):
drec = self(batch['pose_body'].view(-1, 63))
loss = self._compute_loss(batch, drec)
val_loss = loss['unweighted_loss']['loss_total']
if self.renderer is not None and self.global_rank == 0 and batch_idx % 500==0 and np.random.rand()>0.5:
out_fname = makepath(self.work_dir, 'renders/vald_rec_E{:03d}_It{:04d}_val_loss_{:.2f}.png'.format(self.current_epoch, batch_idx, val_loss.item()), isfile=True)
self.renderer([batch, drec], out_fname = out_fname)
dgen = self.vp_model.sample_poses(self.vp_ps.logging.num_bodies_to_display)
out_fname = makepath(self.work_dir, 'renders/vald_gen_E{:03d}_I{:04d}.png'.format(self.current_epoch, batch_idx), isfile=True)
self.renderer([dgen], out_fname = out_fname)
progress_bar = {'v2v': val_loss}
return {'val_loss': c2c(val_loss), 'progress_bar': progress_bar, 'log': progress_bar}
def validation_epoch_end(self, outputs):
metrics = {'val_loss': np.nanmean(np.concatenate([v['val_loss'] for v in outputs])) }
if self.global_rank == 0:
self.text_logger('Epoch {}: {}'.format(self.current_epoch, ', '.join('{}:{:.2f}'.format(k, v) for k, v in metrics.items())))
self.text_logger('lr is {}'.format([pg['lr'] for opt in self.trainer.optimizers for pg in opt.param_groups]))
metrics = {k: torch.as_tensor(v) for k, v in metrics.items()}
return {'val_loss': metrics['val_loss'], 'log': metrics}
@rank_zero_only
def on_train_end(self):
self.train_endtime = dt.now().replace(microsecond=0)
endtime = dt.strftime(self.train_endtime, '%Y_%m_%d_%H_%M_%S')
elapsedtime = self.train_endtime - self.train_starttime
self.vp_ps.logging.best_model_fname = self.trainer.checkpoint_callback.best_model_path
self.text_logger('Epoch {} - Finished training at {} after {}'.format(self.current_epoch, endtime, elapsedtime))
self.text_logger('best_model_fname: {}'.format(self.vp_ps.logging.best_model_fname))
dump_config(self.vp_ps, osp.join(self.work_dir, '{}_{}.yaml'.format(self.expr_id, self.dataset_id)))
self.hparams = self.vp_ps.toDict()
@rank_zero_only
def prepare_data(self):
'''' Similar to standard AMASS dataset preparation pipeline:
Donwload npz file, corresponding to body data from https://amass.is.tue.mpg.de/ and place them under amass_dir
'''
self.text_logger = log2file(makepath(self.work_dir, '{}.log'.format(self.expr_id), isfile=True), prefix=self._log_prefix)
prepare_vposer_datasets(self.dataset_dir, self.vp_ps.data_parms.amass_splits, self.vp_ps.data_parms.amass_dir, logger=self.text_logger)
def create_expr_message(ps):
expr_msg = '[{}] batch_size = {}.'.format(ps.general.expr_id, ps.train_parms.batch_size)
return expr_msg
def train_vposer_once(_config):
resume_training_if_possible = True
model = VPoserTrainer(_config)
model.vp_ps.logging.expr_msg = create_expr_message(model.vp_ps)
# model.text_logger(model.vp_ps.logging.expr_msg.replace(". ", '.\n'))
dump_config(model.vp_ps, osp.join(model.work_dir, '{}.yaml'.format(model.expr_id)))
logger = TensorBoardLogger(model.work_dir, name='tensorboard')
lr_monitor = LearningRateMonitor()
snapshots_dir = osp.join(model.work_dir, 'snapshots')
checkpoint_callback = ModelCheckpoint(
dirpath=makepath(snapshots_dir, isfile=True),
filename="%s_{epoch:02d}_{val_loss:.2f}" % model.expr_id,
save_top_k=1,
verbose=True,
monitor='val_loss',
mode='min',
)
early_stop_callback = EarlyStopping(**model.vp_ps.train_parms.early_stopping)
resume_from_checkpoint = None
if resume_training_if_possible:
available_ckpts = sorted(glob.glob(osp.join(snapshots_dir, '*.ckpt')), key=os.path.getmtime)
if len(available_ckpts)>0:
resume_from_checkpoint = available_ckpts[-1]
model.text_logger('Resuming the training from {}'.format(resume_from_checkpoint))
trainer = pl.Trainer(gpus=1,
weights_summary='top',
distributed_backend = 'ddp',
# replace_sampler_ddp=False,
# accumulate_grad_batches=4,
# profiler=False,
# overfit_batches=0.05,
# fast_dev_run = True,
# limit_train_batches=0.02,
# limit_val_batches=0.02,
# num_sanity_val_steps=2,
plugins=[DDPPlugin(find_unused_parameters=False)],
callbacks=[lr_monitor, early_stop_callback, checkpoint_callback],
max_epochs=model.vp_ps.train_parms.num_epochs,
logger=logger,
resume_from_checkpoint=resume_from_checkpoint
)
trainer.fit(model)
|