File size: 7,070 Bytes
373af33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os
import sys
import gradio as gr
import time 

os.makedirs("outputs", exist_ok=True) 
sys.path.insert(0, '.')

import argparse
import os.path as osp
import mmcv
import numpy as np
import torch
from mmcv.runner import load_checkpoint
from mmcv.parallel import MMDataParallel
from scipy.ndimage import gaussian_filter
from IPython.display import Image

from mogen.models.utils.imagebind_wrapper import (
    extract_text_feature,
    extract_audio_feature,
    imagebind_huge
)
from mogen.models import build_architecture

from mogen.utils.plot_utils import (
    plot_3d_motion,
    add_audio,
    get_audio_length
)
from mogen.datasets.paramUtil import (
    t2m_body_hand_kinematic_chain,
    t2m_kinematic_chain
)
from mogen.datasets.utils import recover_from_ric
from mogen.datasets.pipelines import RetargetSkeleton


def motion_temporal_filter(motion, sigma=1):
    motion = motion.reshape(motion.shape[0], -1)
    for i in range(motion.shape[1]):
        motion[:, i] = gaussian_filter(motion[:, i], sigma=sigma, mode="nearest")
    return motion.reshape(motion.shape[0], -1, 3)

def plot_tomato(data, kinematic_chain, result_path, npy_path, fps, sigma=None):
    joints = recover_from_ric(torch.from_numpy(data).float(), 52).numpy()
    joints = motion_temporal_filter(joints, sigma=2.5)
    joints = rtg_skl({"keypoints3d": joints, "meta_data": {"has_lhnd": True}})["keypoints3d"]
    plot_3d_motion(
        out_path=result_path,
        joints=joints,
        kinematic_chain=kinematic_chain,
        title=None,
        fps=fps)
    if npy_path is not None:
        np.save(npy_path, joints)

def create_lmm():
    config_path = "configs/lmm/lmm_small_demo.py"
    ckpt_path = "pretrained/lmm_small_demo.pth"
    cfg = mmcv.Config.fromfile(config_path)
    model = build_architecture(cfg.model)
    load_checkpoint(model, ckpt_path, map_location='cpu')
    if device == 'cpu':
        model = model.cpu()
    else:
        model = MMDataParallel(model, device_ids=[0])
    model.eval()
    return model

# device = 'cpu'
device = 'cuda'
# os.environ["NO_PROXY"]    = os.environ["no_proxy"]    = "localhost, 127.0.0.1:7860"
model_lmm = create_lmm()
model_imagebind = imagebind_huge(pretrained=True)
model_imagebind.eval()
model_imagebind.to(device)
rtg_skl = RetargetSkeleton(tgt_skel_file='data/motionverse/statistics/skeleton.npy')

mean_path = "data/mean.npy"
std_path = "data/std.npy"
mean = np.load(mean_path)
std = np.load(std_path)

def show_generation_result(model, text, audio_path, motion_length, result_path):
    fps = 20
    if audio_path is not None:
        motion_length = min(200, int(get_audio_length(audio_path) * fps) + 1)
    motion = torch.zeros(1, motion_length, 669).to(device)
    motion_mask = torch.ones(1, motion_length).to(device)
    motion_mask[0, :motion_length] = 1
    motion_mask = motion_mask.unsqueeze(-1).repeat(1, 1, 10)
    motion_mask[:, :, 9] = 0
    dataset_name = "humanml3d_t2m"
    kinematic_chain = t2m_body_hand_kinematic_chain
    rotation_type = "h3d_rot"
    motion_metas = [{
        'meta_data': dict(framerate=fps, dataset_name=dataset_name, rotation_type=rotation_type)
    }]
    motion_length = torch.Tensor([motion_length]).long().to(device)
    if text is None and audio_path is not None:
        text = "A person is standing and speaking."
        
    model = model.to(device)
    input = {
        'motion': motion,
        'motion_mask': motion_mask,
        'motion_length': motion_length,
        'motion_metas': motion_metas,
        'num_intervals': 1
    }
    if text is not None:
        text_word_feat, text_seq_feat = \
            extract_text_feature([text], model_imagebind, device)
        assert text_word_feat.shape[0] == 1
        assert text_word_feat.shape[1] == 77
        assert text_word_feat.shape[2] == 1024
        assert text_seq_feat.shape[0] == 1
        assert text_seq_feat.shape[1] == 1024
        input['text_word_feat'] = text_word_feat
        input['text_seq_feat'] = text_seq_feat
        input['text_cond'] = torch.Tensor([1.0] * 1).to(device)
    else:
        input['text_word_feat'] = torch.zeros(1, 77, 1024).to(device)
        input['text_seq_feat'] = torch.zeros(1, 1024)
        input['text_cond'] = torch.Tensor([0] * 1).to(device)
    if audio_path is not None:
        speech_word_feat, speech_seq_feat = \
            extract_audio_feature([audio_path], model_imagebind, device)
        assert speech_word_feat.shape[0] == 1
        assert speech_word_feat.shape[1] == 229
        assert speech_word_feat.shape[2] == 768
        assert speech_seq_feat.shape[0] == 1
        assert speech_seq_feat.shape[1] == 1024
        input['speech_word_feat'] = speech_word_feat
        input['speech_seq_feat'] = speech_seq_feat
        input['speech_cond'] = torch.Tensor([1.0] * 1).to(device)
    else:
        input['speech_word_feat'] = torch.zeros(1, 229, 768).to(device)
        input['speech_seq_feat'] = torch.zeros(1, 1024)
        input['speech_cond'] = torch.Tensor([0] * 1).to(device)
       
    all_pred_motion = []
    with torch.no_grad():
        input['inference_kwargs'] = {}
        output = model(**input)[0]['pred_motion'][:motion_length]
        pred_motion = output.cpu().detach().numpy()
        pred_motion = pred_motion * std + mean
        
    plot_tomato(pred_motion, kinematic_chain, result_path, None, fps, 2)

    if audio_path is not None:
        add_audio(result_path, [audio_path])
        
def generate(prompt, audio_path, length):
    if not os.path.exists("outputs"):
        os.mkdir("outputs")
    result_path = "outputs/" + str(int(time.time())) + ".mp4"
    print(audio_path)
    if audio_path.endswith("placeholder.wav"):
        audio_path = None
    if len(prompt) == 0: 
        prompt = None
    show_generation_result(model_lmm, prompt, audio_path, length, result_path)
    return result_path

input_audio = gr.Audio(
    type='filepath',
    format='wav',
    label="Audio (1-10s, overwrite motion length):",
    show_label=True,
    sources=["upload", "microphone"],
    min_length=1,
    max_length=10,
    waveform_options=gr.WaveformOptions(
        waveform_color="#01C6FF",
        waveform_progress_color="#0066B4",
        skip_length=2,
        show_controls=False,
    ),
)

input_text = gr.Textbox(
    label="Text prompt:"
)

demo = gr.Interface(
    fn=generate,
    inputs=[input_text, input_audio, gr.Slider(20, 200, value=60, label="Motion length (fps 20):")],
    outputs=gr.Video(label="Video:"),
    examples=[
        ["A person walks in a circle.", "examples/placeholder.m4a", 120],
        ["A person jumps forward.", "examples/placeholder.m4a", 100],
        ["A person is stretching arms.", "examples/placeholder.m4a", 80],
        ["", "examples/surprise.m4a", 200],
        ["", "examples/angry.m4a", 200],
    ],
    title="LMM: Large Motion Model for Unified Multi-Modal Motion Generation",
    description="\nThis is an interactive demo for LMM. For more information, feel free to visit our project page(https://github.com/mingyuan-zhang/LMM).")

demo.queue()
demo.launch()