# Copyright (C) 2021-2025, Mindee. # This program is licensed under the Apache License 2.0. # See LICENSE or go to for full license details. import cv2 import matplotlib.pyplot as plt import numpy as np import streamlit as st from doctr.file_utils import is_tf_available from doctr.io import DocumentFile from doctr.utils.visualization import visualize_page if is_tf_available(): import tensorflow as tf from backend.tensorflow import DET_ARCHS, RECO_ARCHS, forward_image, load_predictor if any(tf.config.experimental.list_physical_devices("gpu")): forward_device = tf.device("/gpu:0") else: forward_device = tf.device("/cpu:0") else: import torch from backend.pytorch import DET_ARCHS, RECO_ARCHS, forward_image, load_predictor forward_device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def main(det_archs, reco_archs): """Build a streamlit layout""" # Wide mode st.set_page_config(layout="wide") # Designing the interface st.title("docTR: Document Text Recognition") # For newline st.write("\n") # Instructions st.markdown("*Hint: click on the top-right corner of an image to enlarge it!*") # Set the columns cols = st.columns((1, 1, 1, 1)) cols[0].subheader("Input page") cols[1].subheader("Segmentation heatmap") cols[2].subheader("OCR output") cols[3].subheader("Page reconstitution") # Sidebar # File selection st.sidebar.title("Document selection") # Choose your own image uploaded_file = st.sidebar.file_uploader("Upload files", type=["pdf", "png", "jpeg", "jpg"]) if uploaded_file is not None: if uploaded_file.name.endswith(".pdf"): doc = DocumentFile.from_pdf(uploaded_file.read()) else: doc = DocumentFile.from_images(uploaded_file.read()) page_idx = st.sidebar.selectbox("Page selection", [idx + 1 for idx in range(len(doc))]) - 1 page = doc[page_idx] cols[0].image(page) # Model selection st.sidebar.title("Model selection") st.sidebar.markdown("**Backend**: " + ("TensorFlow" if is_tf_available() else "PyTorch")) det_arch = st.sidebar.selectbox("Text detection model", det_archs) reco_arch = st.sidebar.selectbox("Text recognition model", reco_archs) # For newline st.sidebar.write("\n") # Only straight pages or possible rotation st.sidebar.title("Parameters") assume_straight_pages = st.sidebar.checkbox("Assume straight pages", value=True) # Disable page orientation detection disable_page_orientation = st.sidebar.checkbox("Disable page orientation detection", value=False) # Disable crop orientation detection disable_crop_orientation = st.sidebar.checkbox("Disable crop orientation detection", value=False) # Straighten pages straighten_pages = st.sidebar.checkbox("Straighten pages", value=False) # Export as straight boxes export_straight_boxes = st.sidebar.checkbox("Export as straight boxes", value=False) st.sidebar.write("\n") # Binarization threshold bin_thresh = st.sidebar.slider("Binarization threshold", min_value=0.1, max_value=0.9, value=0.3, step=0.1) st.sidebar.write("\n") # Box threshold box_thresh = st.sidebar.slider("Box threshold", min_value=0.1, max_value=0.9, value=0.1, step=0.1) st.sidebar.write("\n") if st.sidebar.button("Analyze page"): if uploaded_file is None: st.sidebar.write("Please upload a document") else: with st.spinner("Loading model..."): predictor = load_predictor( det_arch=det_arch, reco_arch=reco_arch, assume_straight_pages=assume_straight_pages, straighten_pages=straighten_pages, export_as_straight_boxes=export_straight_boxes, disable_page_orientation=disable_page_orientation, disable_crop_orientation=disable_crop_orientation, bin_thresh=bin_thresh, box_thresh=box_thresh, device=forward_device, ) with st.spinner("Analyzing..."): # Forward the image to the model seg_map = forward_image(predictor, page, forward_device) seg_map = np.squeeze(seg_map) seg_map = cv2.resize(seg_map, (page.shape[1], page.shape[0]), interpolation=cv2.INTER_LINEAR) # Plot the raw heatmap fig, ax = plt.subplots() ax.imshow(seg_map) ax.axis("off") cols[1].pyplot(fig) # Plot OCR output out = predictor([page]) fig = visualize_page(out.pages[0].export(), out.pages[0].page, interactive=False, add_labels=False) cols[2].pyplot(fig) # Page reconsitution under input page page_export = out.pages[0].export() if assume_straight_pages or (not assume_straight_pages and straighten_pages): img = out.pages[0].synthesize() cols[3].image(img, clamp=True) # Display JSON st.markdown("\nHere are your analysis results in JSON format:") st.json(page_export, expanded=False) if __name__ == "__main__": main(DET_ARCHS, RECO_ARCHS)