# Copyright (c) 2019, NVIDIA Corporation. All rights reserved. # # This work is made available under the Nvidia Source Code License-NC. # To view a copy of this license, visit # https://nvlabs.github.io/stylegan2/license.html """Miscellaneous helper utils for Tensorflow.""" import os import numpy as np import tensorflow as tf # Silence deprecation warnings from TensorFlow 1.13 onwards import logging logging.getLogger('tensorflow').setLevel(logging.ERROR) import tensorflow.contrib # requires TensorFlow 1.x! tf.contrib = tensorflow.contrib from typing import Any, Iterable, List, Union TfExpression = Union[tf.Tensor, tf.Variable, tf.Operation] """A type that represents a valid Tensorflow expression.""" TfExpressionEx = Union[TfExpression, int, float, np.ndarray] """A type that can be converted to a valid Tensorflow expression.""" def run(*args, **kwargs) -> Any: """Run the specified ops in the default session.""" assert_tf_initialized() return tf.get_default_session().run(*args, **kwargs) def is_tf_expression(x: Any) -> bool: """Check whether the input is a valid Tensorflow expression, i.e., Tensorflow Tensor, Variable, or Operation.""" return isinstance(x, (tf.Tensor, tf.Variable, tf.Operation)) def shape_to_list(shape: Iterable[tf.Dimension]) -> List[Union[int, None]]: """Convert a Tensorflow shape to a list of ints. Retained for backwards compatibility -- use TensorShape.as_list() in new code.""" return [dim.value for dim in shape] def flatten(x: TfExpressionEx) -> TfExpression: """Shortcut function for flattening a tensor.""" with tf.name_scope("Flatten"): return tf.reshape(x, [-1]) def log2(x: TfExpressionEx) -> TfExpression: """Logarithm in base 2.""" with tf.name_scope("Log2"): return tf.log(x) * np.float32(1.0 / np.log(2.0)) def exp2(x: TfExpressionEx) -> TfExpression: """Exponent in base 2.""" with tf.name_scope("Exp2"): return tf.exp(x * np.float32(np.log(2.0))) def lerp(a: TfExpressionEx, b: TfExpressionEx, t: TfExpressionEx) -> TfExpressionEx: """Linear interpolation.""" with tf.name_scope("Lerp"): return a + (b - a) * t def lerp_clip(a: TfExpressionEx, b: TfExpressionEx, t: TfExpressionEx) -> TfExpression: """Linear interpolation with clip.""" with tf.name_scope("LerpClip"): return a + (b - a) * tf.clip_by_value(t, 0.0, 1.0) def absolute_name_scope(scope: str) -> tf.name_scope: """Forcefully enter the specified name scope, ignoring any surrounding scopes.""" return tf.name_scope(scope + "/") def absolute_variable_scope(scope: str, **kwargs) -> tf.variable_scope: """Forcefully enter the specified variable scope, ignoring any surrounding scopes.""" return tf.variable_scope(tf.VariableScope(name=scope, **kwargs), auxiliary_name_scope=False) def _sanitize_tf_config(config_dict: dict = None) -> dict: # Defaults. cfg = dict() cfg["rnd.np_random_seed"] = None # Random seed for NumPy. None = keep as is. cfg["rnd.tf_random_seed"] = "auto" # Random seed for TensorFlow. 'auto' = derive from NumPy random state. None = keep as is. cfg["env.TF_CPP_MIN_LOG_LEVEL"] = "1" # 0 = Print all available debug info from TensorFlow. 1 = Print warnings and errors, but disable debug info. cfg["graph_options.place_pruned_graph"] = True # False = Check that all ops are available on the designated device. True = Skip the check for ops that are not used. cfg["gpu_options.allow_growth"] = True # False = Allocate all GPU memory at the beginning. True = Allocate only as much GPU memory as needed. # Remove defaults for environment variables that are already set. for key in list(cfg): fields = key.split(".") if fields[0] == "env": assert len(fields) == 2 if fields[1] in os.environ: del cfg[key] # User overrides. if config_dict is not None: cfg.update(config_dict) return cfg def init_tf(config_dict: dict = None) -> None: """Initialize TensorFlow session using good default settings.""" # Skip if already initialized. if tf.get_default_session() is not None: return # Setup config dict and random seeds. cfg = _sanitize_tf_config(config_dict) np_random_seed = cfg["rnd.np_random_seed"] if np_random_seed is not None: np.random.seed(np_random_seed) tf_random_seed = cfg["rnd.tf_random_seed"] if tf_random_seed == "auto": tf_random_seed = np.random.randint(1 << 31) if tf_random_seed is not None: tf.set_random_seed(tf_random_seed) # Setup environment variables. for key, value in cfg.items(): fields = key.split(".") if fields[0] == "env": assert len(fields) == 2 os.environ[fields[1]] = str(value) # Create default TensorFlow session. create_session(cfg, force_as_default=True) def assert_tf_initialized(): """Check that TensorFlow session has been initialized.""" if tf.get_default_session() is None: raise RuntimeError("No default TensorFlow session found. Please call dnnlib.tflib.init_tf().") def create_session(config_dict: dict = None, force_as_default: bool = False) -> tf.Session: """Create tf.Session based on config dict.""" # Setup TensorFlow config proto. cfg = _sanitize_tf_config(config_dict) config_proto = tf.ConfigProto() for key, value in cfg.items(): fields = key.split(".") if fields[0] not in ["rnd", "env"]: obj = config_proto for field in fields[:-1]: obj = getattr(obj, field) setattr(obj, fields[-1], value) # Create session. session = tf.Session(config=config_proto) if force_as_default: # pylint: disable=protected-access session._default_session = session.as_default() session._default_session.enforce_nesting = False session._default_session.__enter__() return session def init_uninitialized_vars(target_vars: List[tf.Variable] = None) -> None: """Initialize all tf.Variables that have not already been initialized. Equivalent to the following, but more efficient and does not bloat the tf graph: tf.variables_initializer(tf.report_uninitialized_variables()).run() """ assert_tf_initialized() if target_vars is None: target_vars = tf.global_variables() test_vars = [] test_ops = [] with tf.control_dependencies(None): # ignore surrounding control_dependencies for var in target_vars: assert is_tf_expression(var) try: tf.get_default_graph().get_tensor_by_name(var.name.replace(":0", "/IsVariableInitialized:0")) except KeyError: # Op does not exist => variable may be uninitialized. test_vars.append(var) with absolute_name_scope(var.name.split(":")[0]): test_ops.append(tf.is_variable_initialized(var)) init_vars = [var for var, inited in zip(test_vars, run(test_ops)) if not inited] run([var.initializer for var in init_vars]) def set_vars(var_to_value_dict: dict) -> None: """Set the values of given tf.Variables. Equivalent to the following, but more efficient and does not bloat the tf graph: tflib.run([tf.assign(var, value) for var, value in var_to_value_dict.items()] """ assert_tf_initialized() ops = [] feed_dict = {} for var, value in var_to_value_dict.items(): assert is_tf_expression(var) try: setter = tf.get_default_graph().get_tensor_by_name(var.name.replace(":0", "/setter:0")) # look for existing op except KeyError: with absolute_name_scope(var.name.split(":")[0]): with tf.control_dependencies(None): # ignore surrounding control_dependencies setter = tf.assign(var, tf.placeholder(var.dtype, var.shape, "new_value"), name="setter") # create new setter ops.append(setter) feed_dict[setter.op.inputs[1]] = value run(ops, feed_dict) def create_var_with_large_initial_value(initial_value: np.ndarray, *args, **kwargs): """Create tf.Variable with large initial value without bloating the tf graph.""" assert_tf_initialized() assert isinstance(initial_value, np.ndarray) zeros = tf.zeros(initial_value.shape, initial_value.dtype) var = tf.Variable(zeros, *args, **kwargs) set_vars({var: initial_value}) return var def convert_images_from_uint8(images, drange=[-1,1], nhwc_to_nchw=False): """Convert a minibatch of images from uint8 to float32 with configurable dynamic range. Can be used as an input transformation for Network.run(). """ images = tf.cast(images, tf.float32) if nhwc_to_nchw: images = tf.transpose(images, [0, 3, 1, 2]) return images * ((drange[1] - drange[0]) / 255) + drange[0] def convert_images_to_uint8(images, drange=[-1,1], nchw_to_nhwc=False, shrink=1): """Convert a minibatch of images from float32 to uint8 with configurable dynamic range. Can be used as an output transformation for Network.run(). """ images = tf.cast(images, tf.float32) if shrink > 1: ksize = [1, 1, shrink, shrink] images = tf.nn.avg_pool(images, ksize=ksize, strides=ksize, padding="VALID", data_format="NCHW") if nchw_to_nhwc: images = tf.transpose(images, [0, 2, 3, 1]) scale = 255 / (drange[1] - drange[0]) images = images * scale + (0.5 - drange[0] * scale) return tf.saturate_cast(images, tf.uint8)