File size: 1,881 Bytes
d0a7b8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import clip
import gradio as gr
import numpy as np
import simple_chalk as chalk
import torch
from googletrans import Translator
from PIL import Image

TOP_N = 5


def match_texts(in_img: Image) -> list:

    """ヒデル準備"""
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model, preprocess = clip.load("ViT-B/32", device=device)

    """ γƒ†γ‚­γ‚Ήγƒˆε‰ε‡¦η† """
    translator = Translator()
    trans_dict = {}
    with open("./sentences_ja.txt") as f:
        for ja_sentence in f:
            en_sentence = translator.translate(ja_sentence, dest="en", src="ja").text
            trans_dict[en_sentence] = ja_sentence
    en_sentences = list(trans_dict.keys())
    texts = clip.tokenize(en_sentences).to(device)

    """ 画像前処理 """
    # image: Tensor (3, 224, 224) -> (1, 3, 224, 224)
    image = preprocess(in_img).unsqueeze(0).to(device)

    """ CLIP ヒデルで処理 """
    with torch.no_grad():
        logits_per_image, logits_per_text = model(image, texts)
        probs = logits_per_image.softmax(dim=-1).cpu().numpy()
    probs_per_image = probs.reshape(-1)
    sort_index = np.argsort(probs_per_image)[::-1]

    """ ε‡¦η†η΅ζžœοΌˆγƒ†γ‚­γ‚ΉγƒˆοΌ‰ε‡ΊεŠ› """
    idxs = sort_index.tolist()
    # θ‹±θͺžε‡ΊεŠ›
    # confidences = {en_sentences[i]: float(probs_per_image[i]) for i in idxs}
    # ζ—₯本θͺžε€‰ζ›ε‡ΊεŠ›
    confidences = {trans_dict[en_sentences[i]]: float(probs_per_image[i]) for i in idxs}
    return confidences


if __name__ == "__main__":
    inputs = gr.Image(type="pil", label="画像をε…₯εŠ›")
    outputs = gr.Label(num_top_classes=TOP_N, label=f"δΈ€θ‡΄γ—γŸγƒ†γ‚­γ‚Ήγƒˆ Top-{TOP_N}")
    gr.Interface(
        fn=match_texts,
        inputs=inputs,
        outputs=outputs,
        examples=["examples-01.jpg", "examples-02.jpg", "examples-03.jpg"],
        allow_flagging="never",
    ).launch(share=False)