import gradio as gr from huggingface_hub import InferenceClient import json from pheye_builder import create_model_and_transforms from huggingface_hub import hf_hub_download import torch from PIL import Image import os import requests import spaces def get_config(hf_model_path): config_path = hf_hub_download(hf_model_path, "config.json") with open(config_path, "r") as f: config = json.load(f) return config def get_model_path(hf_model_path): return hf_hub_download(hf_model_path, "checkpoint.pt") HF_MODEL = "miguelcarv/Pheye-x2-672" config = get_config(HF_MODEL) print("Got config") model, tokenizer = create_model_and_transforms( clip_vision_encoder_path=config["encoder"], lang_decoder_path=config["decoder"], tokenizer_path=config["tokenizer"], cross_attn_every_n_layers=config["cross_interval"], level=config["level"], reduce_factor=config["reduce"], from_layer=config["from_layer"], encoder_dtype=eval(config["encoder_dtype"]), decoder_dtype=eval(config["decoder_dtype"]), dtype=eval(config["other_params_dtype"]) ) if config["first_level"]: model.vision_encoder.add_first_level_adapter() print("Created model") DEVICE = 'cuda' model_path = get_model_path(HF_MODEL) model.load_state_dict(torch.load(model_path, map_location="cpu")) model = model.to(DEVICE) print("Loaded model") SYSTEM_PROMPT = "You are an AI visual assistant and you are seeing a single image. You will receive an instruction regarding that image. Your goal is to follow the instruction as faithfully as you can." whiteboard = Image.open(requests.get("https://c1.staticflickr.com/7/6168/6207108414_a8833f410e_o.jpg", stream=True).raw).convert('RGB') taxi_image = Image.open(requests.get("https://llava.hliu.cc/file=/nobackup/haotian/tmp/gradio/ca10383cc943e99941ecffdc4d34c51afb2da472/extreme_ironing.jpg", stream=True).raw).convert('RGB') @spaces.GPU def generate_answer(img, question, max_new_tokens, num_beams): image = [img] prompt = [f"{SYSTEM_PROMPT}\n\nInstruction: {question}\nOutput:"] inputs = tokenizer(prompt, padding='longest', return_tensors='pt') print("Generating a response with the following parameters:") print(f"""Question: {question}\nMax New Tokens: {max_new_tokens}\nNum Beams: {num_beams}""") model.eval() with torch.no_grad(): outputs = model.generate(vision_x=image, lang_x=inputs.input_ids.to(DEVICE), device=DEVICE, max_new_tokens=max_new_tokens, num_beams = num_beams, eos_token_id = tokenizer.eos_token_id, pad_token_id = tokenizer.pad_token_id, attention_mask=inputs.attention_mask.to(DEVICE)) answer = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0].split("Output:")[-1].lstrip() return answer # Create the Gradio interface iface = gr.Interface( fn=generate_answer, inputs=[ gr.Image(type="pil", label="Image"), gr.Textbox(label="Question"), gr.Slider(minimum=5, maximum=500, step=1, value=50, label="Max New Tokens"), gr.Slider(minimum=1, maximum=5, step=1, value=3, label="Num Beams") ], outputs=gr.Textbox(label="Answer"), title="