File size: 13,139 Bytes
aac8fa1 8446c23 aac8fa1 3835c7d aac8fa1 3835c7d aac8fa1 ea33853 aac8fa1 6aa2b20 aac8fa1 ea33853 aac8fa1 ea33853 aac8fa1 4e425e4 8446c23 4e425e4 aac8fa1 3ad2259 aac8fa1 8446c23 aac8fa1 8446c23 aac8fa1 4e425e4 3835c7d aac8fa1 6aa2b20 3835c7d 6aa2b20 aac8fa1 8446c23 aac8fa1 8446c23 aac8fa1 8446c23 aac8fa1 8446c23 aac8fa1 8446c23 aac8fa1 8446c23 aac8fa1 8446c23 aac8fa1 8446c23 aac8fa1 8446c23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
from datasets import load_dataset
from dataclasses import dataclass
from typing import Any, Dict, List, Optional
import random
import matplotlib.pyplot as plt
from score import calculate_gpt4o_scores, BENCHMARK_SCORES
# Define benchmarks
BENCHMARKS = {
"icelandic-wiki-qa": {
"name": "Íslensk saga og menning",
"path": "mideind/icelandic_wiki_qa",
"type": "free_text",
"white_listed_questions": [
"Hver er talinn hafa átt Snorralaug?",
"Í hvaða bandaríska háskóla var bókasafnið sem Halldór Hermannsson var bókavörður við?",
"Hvaða íslenska barnabók hlaut Íslensku bókmenntaverðlaunin árið 1999?",
"Hvenær hefst kirkjuárið í íslensku þjóðkirkjunni?",
"Hvað táknaði broddur yfir sérhljóði upphaflega í íslenskum handritum?",
"Hvaða ferskeytlu í íslenskum kveðskap er hægt að lesa bæði aftur á bak og áfram án þess að raska bragforminu?",
"Hver nefndi Ísland?",
"Fyrir hvaða kvikmynd var íslenska dægurlagið „Vegir liggja til allra átta” samið?",
"Í hvaða firði er Flugumýri?",
"Hver samdi Íslendinga sögu?",
],
},
"icelandic-winogrande": {
"name": "Almenn heimsþekking og ályktunarhæfni",
"path": "mideind/icelandic-winogrande",
"type": "multiple_choice",
},
"grammatical-error-detection": {
"name": "Málfræðivillur",
"path": "mideind/icelandic-sentences-gec",
"type": "multiple_choice",
},
"icelandic-inflection-all": {
"name": "Fallbeygingar",
"path": "mideind/icelandic-inflection-all-flat",
"type": "free_text",
"blacklisted_noun_phrases": [
"hágæða sprengjutilræði",
"óstöðvandi geðröskun",
"allsber meirihluti",
"geðsjúkt álagsstýrikerfi",
"kynþokkafullt starfsvið",
"lettneskur þræll",
"nígerískt meyjarhaft",
"kynæsandi málvísindamaður",
"kynþokkafullur menntaskólakennari",
"lóðrétt forhúð",
"vandþrædd hvatabuska",
],
},
"icelandic-belebele": {
"name": "Lesskilningur",
"path": "facebook/belebele",
"config_name": "isl_Latn",
"split": "test",
"type": "multiple_choice",
},
"icelandic-arc-challenge": {
"name": "Vísindi",
"path": "mideind/icelandic-arc-challenge",
"type": "multiple_choice",
},
}
DATASETS = {
dataset_name: load_dataset(
BENCHMARKS[dataset_name]["path"],
name=BENCHMARKS[dataset_name].get("config_name"),
split=BENCHMARKS[dataset_name].get("split", "train"),
)
for dataset_name in BENCHMARKS
}
# Dataset specific preprocessing and standardization
def winogrande_preprocessing(sample):
new_sample = {}
new_sample["question"] = (
"Lestu eftirfarandi málsgrein:<p style='margin-left: 20px;'><i>{sentence}</i></p><br>Hvor valkostanna passar betur í eyðuna?".format(
sentence=sample["sentence"].replace("_", "________")
)
)
new_sample["options"] = sample["option1"], sample["option2"]
new_sample["answer"] = (
sample["option1"] if sample["answer"] == "1" else sample["option2"]
)
new_sample["instruction"] = "Valkostir"
return new_sample
def icelandic_sentence_gec_preprocessing(sample):
new_sample = {}
new_sample["question"] = (
f"Inniheldur eftirfarandi málsgrein villu?<p style='margin-left: 25px;'><i>{sample['sentence']}</i></p>"
)
new_sample["options"] = "Villa", "Engin villa"
new_sample["answer"] = "Villa" if sample["correct"] == "false" else "Engin villa"
new_sample["instruction"] = "Valkostir"
return new_sample
def inflection_all_preprocessing(sample):
new_sample = {}
case_map = {
"nf": "nefnifalli",
"þf": "þolfalli",
"þgf": "þágufalli",
"ef": "eignarfalli",
}
plurality_map = {"et": "eintölu", "ft": "fleirtölu"}
new_sample["question"] = (
f"Hvernig beygist <i>„{sample['noun_phrase']}“</i> í {case_map[sample['case']]} {plurality_map[sample['plurality']]}?"
)
new_sample["answer"] = sample["inflection"]
new_sample["instruction"] = "Skrifaðu réttu beyginguna."
return new_sample
def belebele_preprocessing(sample):
new_sample = {}
new_sample["question"] = (
f'Lestu eftirfarandi texta:<p style="margin-left: 25px;"><i>{sample["flores_passage"]}</i></p>\n\n{sample["question"]}'
)
new_sample["options"] = [
sample["mc_answer1"],
sample["mc_answer2"],
sample["mc_answer3"],
sample["mc_answer4"],
]
correct_idx = int(sample["correct_answer_num"]) - 1
new_sample["answer"] = new_sample["options"][correct_idx]
new_sample["instruction"] = "Veldu réttasta svarið."
return new_sample
def arc_challenge_preprocessing(sample):
new_sample = {}
new_sample["question"] = sample["question"]
new_sample["options"] = sample["choices"]["text"]
correct_idx = sample["choices"]["label"].index(sample["answerKey"])
new_sample["answer"] = sample["choices"]["text"][correct_idx]
new_sample["instruction"] = "Veldu réttasta svarið."
return new_sample
def wikipedia_preprocessing(sample):
new_sample = {}
new_sample["question"] = sample["query"]
new_sample["answer"] = sample["answer"]
new_sample["instruction"] = "Skrifaðu svarið þitt að neðan."
return new_sample
@dataclass
class QuizState:
benchmark_name: str
samples: List[Dict[str, Any]]
current_question: int
user_answers: List[Optional[str]]
correct_answers: List[str]
quiz_completed: bool
user_scores: List[Optional[float]]
@dataclass
class QuestionData:
question_num: str
question: str
options: Optional[List[str]]
answer: Optional[str]
next_button_text: str
previous_button_visibility: bool
instruction: str = ""
class BenchmarkQuiz:
def __init__(self):
self.state = None
def start_quiz(self, benchmark_name: str) -> QuizState:
samples = self.load_benchmark(benchmark_name)
correct_answers = [sample["answer"] for sample in samples]
self.state = QuizState(
benchmark_name=benchmark_name,
samples=samples,
current_question=0,
user_answers=[None] * len(samples),
correct_answers=correct_answers,
quiz_completed=False,
user_scores=[None] * len(samples),
)
return self.state
def load_benchmark(self, benchmark_name: str) -> List[Dict[str, Any]]:
dataset = DATASETS[benchmark_name]
if benchmark_name == "icelandic-wiki-qa":
filtered_samples = [
sample
for sample in dataset
if sample["query"]
in BENCHMARKS[benchmark_name]["white_listed_questions"]
]
samples = random.sample(filtered_samples, 5)
else:
random_indices = random.sample(range(len(dataset)), 5)
samples = dataset.select(random_indices)
if benchmark_name == "icelandic-winogrande":
samples = [winogrande_preprocessing(sample) for sample in samples]
elif benchmark_name == "grammatical-error-detection":
samples = [
icelandic_sentence_gec_preprocessing(sample) for sample in samples
]
elif benchmark_name == "icelandic-inflection-all":
while any(
sample["noun_phrase"]
in BENCHMARKS[benchmark_name]["blacklisted_noun_phrases"]
for sample in samples
):
random_indices = random.sample(range(len(dataset)), 5)
samples = dataset.select(random_indices)
samples = [inflection_all_preprocessing(sample) for sample in samples]
elif benchmark_name == "icelandic-belebele":
samples = [belebele_preprocessing(sample) for sample in samples]
elif benchmark_name == "icelandic-arc-challenge":
samples = [arc_challenge_preprocessing(sample) for sample in samples]
elif benchmark_name == "icelandic-wiki-qa":
samples = [wikipedia_preprocessing(sample) for sample in samples]
return samples
def update_question(self) -> QuestionData:
"""
Update the question data based on the current state.
Is called when the user navigates to a new question.
"""
current_question = self.state.current_question
sample = self.state.samples[current_question]
question_num = (
f"### Spurning {current_question + 1} af {len(self.state.samples)}"
)
question = sample["question"]
options = sample.get("options")
answer = self.state.user_answers[current_question]
next_button_text = (
"Klára" if current_question == len(self.state.samples) - 1 else "Næsta"
)
previous_button_visibility = current_question > 0
instruction = sample.get("instruction", "")
return QuestionData(
question_num=question_num,
question=question,
options=options,
answer=answer,
next_button_text=next_button_text,
previous_button_visibility=previous_button_visibility,
instruction=instruction,
)
def next_question(self, answer: str) -> Dict[str, Any]:
"""
Update the state with the user's answer to the current question.
If the quiz is not completed, return the next question data.
If the quiz is completed, return the score plot.
Is called when the user submits an answer.
"""
self.state.user_answers[self.state.current_question] = answer
if self.state.current_question < len(self.state.samples) - 1:
self.state.current_question += 1
return {"completed": False, "question_data": self.update_question()}
else:
self.state.quiz_completed = True
user_scores = self.calculate_scores()
self.state.user_scores = user_scores
plot = self.plot_score(user_scores)
return {
"completed": True,
"plot": plot,
"results_data": self.get_results_data(),
}
def previous_question(self) -> QuestionData:
if self.state.current_question > 0:
self.state.current_question -= 1
return self.update_question()
def calculate_scores(self) -> list[float]:
if self.state.benchmark_name == "icelandic-wiki-qa":
queries = [sample["question"] for sample in self.state.samples]
return calculate_gpt4o_scores(
queries, self.state.user_answers, self.state.correct_answers
)
scores = [
float(user_answer == correct_answer)
for user_answer, correct_answer in zip(
self.state.user_answers, self.state.correct_answers
)
]
return scores
def plot_score(self, user_scores: List[float]):
user_score = sum(user_scores) / len(user_scores)
scores = {**BENCHMARK_SCORES[self.state.benchmark_name], "Þú": 100 * user_score}
# Sort by score
scores = dict(sorted(scores.items(), key=lambda item: item[1]))
# Define colors for user vs models
colors = {name: "tab:blue" for name in scores.keys()}
colors["Þú"] = "tab:green"
fig, ax = plt.subplots(figsize=(10, 6), dpi=250)
ax.spines[["left", "top", "right"]].set_visible(False)
ax.barh(
scores.keys(),
scores.values(),
height=0.6,
color=[colors[name] for name in scores.keys()],
)
ax.set_axisbelow(True)
ax.xaxis.grid(True, linestyle="--", alpha=0.6)
ax.set_title(
f"{BENCHMARKS[self.state.benchmark_name]['name']}: Svona stóðstu þig miðað við mállíkönin",
pad=20,
)
ax.set_xlabel("Stig (%)")
ax.set_xlim(0, 100)
plt.tight_layout()
return fig
def get_results_data(self) -> List[Dict[str, Any]]:
return [
{
"question_num": i + 1,
"question": sample["question"],
"user_answer": user_answer,
"correct_answer": correct_answer,
"options": sample.get("options"),
"instruction": sample.get("instruction", ""),
"points": score,
}
for i, (sample, user_answer, correct_answer, score) in enumerate(
zip(
self.state.samples,
self.state.user_answers,
self.state.correct_answers,
self.state.user_scores,
)
)
]
|