Spaces:
Runtime error
Runtime error
LanHarmony
commited on
Commit
·
fa02329
1
Parent(s):
69af532
introduce control net from diffusers
Browse files- app.py +0 -44
- image/placeholder.txt +0 -0
- visual_foundation_models.py +2 -13
app.py
CHANGED
@@ -42,24 +42,7 @@ Since Visual ChatGPT is a text language model, Visual ChatGPT must use tools to
|
|
42 |
The thoughts and observations are only visible for Visual ChatGPT, Visual ChatGPT should remember to repeat important information in the final response for Human.
|
43 |
Thought: Do I need to use a tool? {agent_scratchpad}"""
|
44 |
|
45 |
-
import subprocess
|
46 |
-
|
47 |
-
def execute_cmd(cmd):
|
48 |
-
output = subprocess.check_output(cmd, shell=True)
|
49 |
-
return output
|
50 |
-
|
51 |
-
execute_cmd('ln -s ControlNet/ldm ./ldm')
|
52 |
-
execute_cmd('ln -s ControlNet/cldm ./cldm')
|
53 |
-
execute_cmd('ln -s ControlNet/annotator ./annotator')
|
54 |
-
print(execute_cmd('nvidia-smi'))
|
55 |
-
print(execute_cmd('nvcc -V'))
|
56 |
-
|
57 |
-
from diffusers import StableDiffusionPipeline
|
58 |
-
from diffusers import StableDiffusionInpaintPipeline
|
59 |
-
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
|
60 |
from visual_foundation_models import *
|
61 |
-
from omegaconf import OmegaConf
|
62 |
-
from ldm.util import instantiate_from_config
|
63 |
from langchain.agents.initialize import initialize_agent
|
64 |
from langchain.agents.tools import Tool
|
65 |
from langchain.chains.conversation.memory import ConversationBufferMemory
|
@@ -68,10 +51,6 @@ from langchain.vectorstores import Weaviate
|
|
68 |
import re
|
69 |
import gradio as gr
|
70 |
|
71 |
-
try:
|
72 |
-
os.mkdir('./image')
|
73 |
-
except OSError as error:
|
74 |
-
print(error)
|
75 |
|
76 |
def cut_dialogue_history(history_memory, keep_last_n_words=500):
|
77 |
tokens = history_memory.split()
|
@@ -87,29 +66,6 @@ def cut_dialogue_history(history_memory, keep_last_n_words=500):
|
|
87 |
paragraphs = paragraphs[1:]
|
88 |
return '\n' + '\n'.join(paragraphs)
|
89 |
|
90 |
-
def get_new_image_name(org_img_name, func_name="update"):
|
91 |
-
head_tail = os.path.split(org_img_name)
|
92 |
-
head = head_tail[0]
|
93 |
-
tail = head_tail[1]
|
94 |
-
name_split = tail.split('.')[0].split('_')
|
95 |
-
this_new_uuid = str(uuid.uuid4())[0:4]
|
96 |
-
if len(name_split) == 1:
|
97 |
-
most_org_file_name = name_split[0]
|
98 |
-
recent_prev_file_name = name_split[0]
|
99 |
-
new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name)
|
100 |
-
else:
|
101 |
-
assert len(name_split) == 4
|
102 |
-
most_org_file_name = name_split[3]
|
103 |
-
recent_prev_file_name = name_split[0]
|
104 |
-
new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name)
|
105 |
-
return os.path.join(head, new_file_name)
|
106 |
-
|
107 |
-
def create_model(config_path, device):
|
108 |
-
config = OmegaConf.load(config_path)
|
109 |
-
OmegaConf.update(config, "model.params.cond_stage_config.params.device", device)
|
110 |
-
model = instantiate_from_config(config.model).cpu()
|
111 |
-
print(f'Loaded model config from [{config_path}]')
|
112 |
-
return model
|
113 |
|
114 |
class ConversationBot:
|
115 |
def __init__(self):
|
|
|
42 |
The thoughts and observations are only visible for Visual ChatGPT, Visual ChatGPT should remember to repeat important information in the final response for Human.
|
43 |
Thought: Do I need to use a tool? {agent_scratchpad}"""
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
from visual_foundation_models import *
|
|
|
|
|
46 |
from langchain.agents.initialize import initialize_agent
|
47 |
from langchain.agents.tools import Tool
|
48 |
from langchain.chains.conversation.memory import ConversationBufferMemory
|
|
|
51 |
import re
|
52 |
import gradio as gr
|
53 |
|
|
|
|
|
|
|
|
|
54 |
|
55 |
def cut_dialogue_history(history_memory, keep_last_n_words=500):
|
56 |
tokens = history_memory.split()
|
|
|
66 |
paragraphs = paragraphs[1:]
|
67 |
return '\n' + '\n'.join(paragraphs)
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
class ConversationBot:
|
71 |
def __init__(self):
|
image/placeholder.txt
ADDED
File without changes
|
visual_foundation_models.py
CHANGED
@@ -1,6 +1,3 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
import diffusers.utils
|
4 |
from diffusers import StableDiffusionPipeline
|
5 |
from diffusers import StableDiffusionInpaintPipeline
|
6 |
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
|
@@ -10,23 +7,15 @@ from controlnet_aux import OpenposeDetector, MLSDdetector, HEDdetector
|
|
10 |
from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation
|
11 |
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
|
12 |
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
|
13 |
-
|
14 |
-
# from ControlNet.cldm.model import create_model, load_state_dict
|
15 |
-
# from ControlNet.cldm.ddim_hacked import DDIMSampler
|
16 |
-
# from ControlNet.annotator.canny import CannyDetector
|
17 |
-
# from ControlNet.annotator.mlsd import MLSDdetector
|
18 |
-
# from ControlNet.annotator.hed import HEDdetector, nms
|
19 |
-
# from ControlNet.annotator.openpose import OpenposeDetector
|
20 |
-
# from ControlNet.annotator.uniformer import UniformerDetector
|
21 |
-
# from ControlNet.annotator.midas import MidasDetector
|
22 |
from PIL import Image
|
23 |
import torch
|
24 |
import numpy as np
|
25 |
import uuid
|
26 |
-
import einops
|
27 |
from pytorch_lightning import seed_everything
|
28 |
import cv2
|
29 |
import random
|
|
|
30 |
|
31 |
def ade_palette():
|
32 |
return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
|
|
|
|
|
|
|
|
|
1 |
from diffusers import StableDiffusionPipeline
|
2 |
from diffusers import StableDiffusionInpaintPipeline
|
3 |
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
|
|
|
7 |
from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation
|
8 |
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
|
9 |
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
|
10 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
from PIL import Image
|
12 |
import torch
|
13 |
import numpy as np
|
14 |
import uuid
|
|
|
15 |
from pytorch_lightning import seed_everything
|
16 |
import cv2
|
17 |
import random
|
18 |
+
import os
|
19 |
|
20 |
def ade_palette():
|
21 |
return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
|