File size: 1,596 Bytes
a936419
40ce5ac
085ef0b
40ce5ac
1605c68
a936419
085ef0b
40ce5ac
0963c3d
085ef0b
cb7bc65
 
6ad3993
cb7bc65
ee8bb54
cb7bc65
 
40ce5ac
cb7bc65
 
79b0e5e
 
 
 
40ce5ac
79b0e5e
 
c3b4363
79b0e5e
 
 
 
40ce5ac
 
79b0e5e
 
 
40ce5ac
 
 
fa566da
40ce5ac
 
 
 
e6bff66
085ef0b
79b0e5e
85deaff
40ce5ac
 
5399f24
40ce5ac
 
 
085ef0b
 
40ce5ac
e5d9b98
085ef0b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import gradio as gr
import requests
import os
import json
import google.generativeai as genai

# Load environment variables
genai.configure(api_key=os.environ["geminiapikey"])
read_key = os.environ.get('HF_TOKEN', None)

custom_css = """
#md {
    height: 400px;  
    font-size: 30px;
    background: #202020;
    padding: 20px;
    color: white;
    border: 1 px solid white;
}
"""

def predict(prompt):
    # Create the model
    generation_config = {
        "temperature": 0.3,
        "top_p": 0.95,
        "top_k": 40,
        "max_output_tokens": 2048,
        "response_mime_type": "text/plain",
    }

    model = genai.GenerativeModel(
        #model_name="gemini-1.5-pro",
        model_name="gemini-2.0-flash-exp",
        generation_config=generation_config,
    )

    chat_session = model.start_chat(
        history=[
        ]
    )
    
    response = chat_session.send_message(prompt)
    #response = model.generate_content(contents=prompt, tools='google_search_retrieval')
    return response.text

# Create the Gradio interface
with gr.Blocks(css=custom_css) as demo:
    with gr.Row():
        details_output = gr.Markdown(label="answer", elem_id="md")        
        #details_output = gr.Textbox(label="Ausgabe", value = f"\n\n\n\n")  
    with gr.Row():
        ort_input = gr.Textbox(label="prompt", placeholder="ask anything...")      
    with gr.Row():         
        button = gr.Button("Senden")    

    # Connect the button to the function
    button.click(fn=predict, inputs=ort_input, outputs=details_output)   

# Launch the Gradio application
demo.launch()