Rename models.py to utils.py
Browse files
models.py
DELETED
@@ -1,273 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
-
from openai import OpenAI
|
4 |
-
from mistralai import Mistral
|
5 |
-
|
6 |
-
AVAILABLE_MODELS = [
|
7 |
-
{
|
8 |
-
"name": "Moonshot Kimi-K2",
|
9 |
-
"id": "moonshotai/Kimi-K2-Instruct",
|
10 |
-
"description": "Moonshot AI Kimi-K2-Instruct model for code generation and general tasks"
|
11 |
-
},
|
12 |
-
{
|
13 |
-
"name": "Kimi K2 Turbo (Preview)",
|
14 |
-
"id": "kimi-k2-turbo-preview",
|
15 |
-
"description": "Moonshot AI Kimi K2 Turbo via OpenAI-compatible API"
|
16 |
-
},
|
17 |
-
{
|
18 |
-
"name": "DeepSeek V3",
|
19 |
-
"id": "deepseek-ai/DeepSeek-V3-0324",
|
20 |
-
"description": "DeepSeek V3 model for code generation"
|
21 |
-
},
|
22 |
-
{
|
23 |
-
"name": "DeepSeek V3.1",
|
24 |
-
"id": "deepseek-ai/DeepSeek-V3.1",
|
25 |
-
"description": "DeepSeek V3.1 model for code generation and general tasks"
|
26 |
-
},
|
27 |
-
{
|
28 |
-
"name": "DeepSeek R1",
|
29 |
-
"id": "deepseek-ai/DeepSeek-R1-0528",
|
30 |
-
"description": "DeepSeek R1 model for code generation"
|
31 |
-
},
|
32 |
-
{
|
33 |
-
"name": "ERNIE-4.5-VL",
|
34 |
-
"id": "baidu/ERNIE-4.5-VL-424B-A47B-Base-PT",
|
35 |
-
"description": "ERNIE-4.5-VL model for multimodal code generation with image support"
|
36 |
-
},
|
37 |
-
{
|
38 |
-
"name": "MiniMax M1",
|
39 |
-
"id": "MiniMaxAI/MiniMax-M1-80k",
|
40 |
-
"description": "MiniMax M1 model for code generation and general tasks"
|
41 |
-
},
|
42 |
-
{
|
43 |
-
"name": "Qwen3-235B-A22B",
|
44 |
-
"id": "Qwen/Qwen3-235B-A22B",
|
45 |
-
"description": "Qwen3-235B-A22B model for code generation and general tasks"
|
46 |
-
},
|
47 |
-
{
|
48 |
-
"name": "SmolLM3-3B",
|
49 |
-
"id": "HuggingFaceTB/SmolLM3-3B",
|
50 |
-
"description": "SmolLM3-3B model for code generation and general tasks"
|
51 |
-
},
|
52 |
-
{
|
53 |
-
"name": "GLM-4.5",
|
54 |
-
"id": "zai-org/GLM-4.5",
|
55 |
-
"description": "GLM-4.5 model with thinking capabilities for advanced code generation"
|
56 |
-
},
|
57 |
-
{
|
58 |
-
"name": "GLM-4.5V",
|
59 |
-
"id": "zai-org/GLM-4.5V",
|
60 |
-
"description": "GLM-4.5V multimodal model with image understanding for code generation"
|
61 |
-
},
|
62 |
-
{
|
63 |
-
"name": "GLM-4.1V-9B-Thinking",
|
64 |
-
"id": "THUDM/GLM-4.1V-9B-Thinking",
|
65 |
-
"description": "GLM-4.1V-9B-Thinking model for multimodal code generation with image support"
|
66 |
-
},
|
67 |
-
{
|
68 |
-
"name": "Qwen3-235B-A22B-Instruct-2507",
|
69 |
-
"id": "Qwen/Qwen3-235B-A22B-Instruct-2507",
|
70 |
-
"description": "Qwen3-235B-A22B-Instruct-2507 model for code generation and general tasks"
|
71 |
-
},
|
72 |
-
{
|
73 |
-
"name": "Qwen3-Coder-480B-A35B-Instruct",
|
74 |
-
"id": "Qwen/Qwen3-Coder-480B-A35B-Instruct",
|
75 |
-
"description": "Qwen3-Coder-480B-A35B-Instruct model for advanced code generation and programming tasks"
|
76 |
-
},
|
77 |
-
{
|
78 |
-
"name": "Qwen3-32B",
|
79 |
-
"id": "Qwen/Qwen3-32B",
|
80 |
-
"description": "Qwen3-32B model for code generation and general tasks"
|
81 |
-
},
|
82 |
-
{
|
83 |
-
"name": "Qwen3-4B-Instruct-2507",
|
84 |
-
"id": "Qwen/Qwen3-4B-Instruct-2507",
|
85 |
-
"description": "Qwen3-4B-Instruct-2507 model for code generation and general tasks"
|
86 |
-
},
|
87 |
-
{
|
88 |
-
"name": "Qwen3-4B-Thinking-2507",
|
89 |
-
"id": "Qwen/Qwen3-4B-Thinking-2507",
|
90 |
-
"description": "Qwen3-4B-Thinking-2507 model with advanced reasoning capabilities for code generation and general tasks"
|
91 |
-
},
|
92 |
-
{
|
93 |
-
"name": "Qwen3-235B-A22B-Thinking",
|
94 |
-
"id": "Qwen/Qwen3-235B-A22B-Thinking-2507",
|
95 |
-
"description": "Qwen3-235B-A22B-Thinking model with advanced reasoning capabilities"
|
96 |
-
},
|
97 |
-
{
|
98 |
-
"name": "Qwen3-30B-A3B-Instruct-2507",
|
99 |
-
"id": "qwen3-30b-a3b-instruct-2507",
|
100 |
-
"description": "Qwen3-30B-A3B-Instruct model via Alibaba Cloud DashScope API"
|
101 |
-
},
|
102 |
-
{
|
103 |
-
"name": "Qwen3-30B-A3B-Thinking-2507",
|
104 |
-
"id": "qwen3-30b-a3b-thinking-2507",
|
105 |
-
"description": "Qwen3-30B-A3B-Thinking model with advanced reasoning via Alibaba Cloud DashScope API"
|
106 |
-
},
|
107 |
-
{
|
108 |
-
"name": "Qwen3-Coder-30B-A3B-Instruct",
|
109 |
-
"id": "qwen3-coder-30b-a3b-instruct",
|
110 |
-
"description": "Qwen3-Coder-30B-A3B-Instruct model for advanced code generation via Alibaba Cloud DashScope API"
|
111 |
-
},
|
112 |
-
{
|
113 |
-
"name": "Cohere Command-A Reasoning 08-2025",
|
114 |
-
"id": "CohereLabs/command-a-reasoning-08-2025",
|
115 |
-
"description": "Cohere Labs Command-A Reasoning (Aug 2025) via Hugging Face InferenceClient"
|
116 |
-
},
|
117 |
-
{
|
118 |
-
"name": "StepFun Step-3",
|
119 |
-
"id": "step-3",
|
120 |
-
"description": "StepFun Step-3 model - AI chat assistant by 阶跃星辰 with multilingual capabilities"
|
121 |
-
},
|
122 |
-
{
|
123 |
-
"name": "Codestral 2508",
|
124 |
-
"id": "codestral-2508",
|
125 |
-
"description": "Mistral Codestral model - specialized for code generation and programming tasks"
|
126 |
-
},
|
127 |
-
{
|
128 |
-
"name": "Mistral Medium 2508",
|
129 |
-
"id": "mistral-medium-2508",
|
130 |
-
"description": "Mistral Medium 2508 model via Mistral API for general tasks and coding"
|
131 |
-
},
|
132 |
-
{
|
133 |
-
"name": "Gemini 2.5 Flash",
|
134 |
-
"id": "gemini-2.5-flash",
|
135 |
-
"description": "Google Gemini 2.5 Flash via OpenAI-compatible API"
|
136 |
-
},
|
137 |
-
{
|
138 |
-
"name": "Gemini 2.5 Pro",
|
139 |
-
"id": "gemini-2.5-pro",
|
140 |
-
"description": "Google Gemini 2.5 Pro via OpenAI-compatible API"
|
141 |
-
},
|
142 |
-
{
|
143 |
-
"name": "GPT-OSS-120B",
|
144 |
-
"id": "openai/gpt-oss-120b",
|
145 |
-
"description": "OpenAI GPT-OSS-120B model for advanced code generation and general tasks"
|
146 |
-
},
|
147 |
-
{
|
148 |
-
"name": "GPT-OSS-20B",
|
149 |
-
"id": "openai/gpt-oss-20b",
|
150 |
-
"description": "OpenAI GPT-OSS-20B model for code generation and general tasks"
|
151 |
-
},
|
152 |
-
{
|
153 |
-
"name": "GPT-5",
|
154 |
-
"id": "gpt-5",
|
155 |
-
"description": "OpenAI GPT-5 model for advanced code generation and general tasks"
|
156 |
-
},
|
157 |
-
{
|
158 |
-
"name": "Grok-4",
|
159 |
-
"id": "grok-4",
|
160 |
-
"description": "Grok-4 model via Poe (OpenAI-compatible) for advanced tasks"
|
161 |
-
},
|
162 |
-
{
|
163 |
-
"name": "Claude-Opus-4.1",
|
164 |
-
"id": "claude-opus-4.1",
|
165 |
-
"description": "Anthropic Claude Opus 4.1 via Poe (OpenAI-compatible)"
|
166 |
-
}
|
167 |
-
]
|
168 |
-
|
169 |
-
# Default model selection
|
170 |
-
DEFAULT_MODEL_NAME = "Qwen3-Coder-480B-A35B-Instruct"
|
171 |
-
DEFAULT_MODEL = None
|
172 |
-
for _m in AVAILABLE_MODELS:
|
173 |
-
if _m.get("name") == DEFAULT_MODEL_NAME:
|
174 |
-
DEFAULT_MODEL = _m
|
175 |
-
break
|
176 |
-
if DEFAULT_MODEL is None and AVAILABLE_MODELS:
|
177 |
-
DEFAULT_MODEL = AVAILABLE_MODELS[0]
|
178 |
-
|
179 |
-
# HF Inference Client
|
180 |
-
HF_TOKEN = os.getenv('HF_TOKEN')
|
181 |
-
if not HF_TOKEN:
|
182 |
-
raise RuntimeError("HF_TOKEN environment variable is not set. Please set it to your Hugging Face API token.")
|
183 |
-
|
184 |
-
def get_inference_client(model_id, provider="auto"):
|
185 |
-
"""Return an InferenceClient with provider based on model_id and user selection."""
|
186 |
-
if model_id == "qwen3-30b-a3b-instruct-2507":
|
187 |
-
# Use DashScope OpenAI client
|
188 |
-
return OpenAI(
|
189 |
-
api_key=os.getenv("DASHSCOPE_API_KEY"),
|
190 |
-
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
|
191 |
-
)
|
192 |
-
elif model_id == "qwen3-30b-a3b-thinking-2507":
|
193 |
-
# Use DashScope OpenAI client for Thinking model
|
194 |
-
return OpenAI(
|
195 |
-
api_key=os.getenv("DASHSCOPE_API_KEY"),
|
196 |
-
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
|
197 |
-
)
|
198 |
-
elif model_id == "qwen3-coder-30b-a3b-instruct":
|
199 |
-
# Use DashScope OpenAI client for Coder model
|
200 |
-
return OpenAI(
|
201 |
-
api_key=os.getenv("DASHSCOPE_API_KEY"),
|
202 |
-
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
|
203 |
-
)
|
204 |
-
elif model_id == "gpt-5":
|
205 |
-
# Use Poe (OpenAI-compatible) client for GPT-5 model
|
206 |
-
return OpenAI(
|
207 |
-
api_key=os.getenv("POE_API_KEY"),
|
208 |
-
base_url="https://api.poe.com/v1"
|
209 |
-
)
|
210 |
-
elif model_id == "grok-4":
|
211 |
-
# Use Poe (OpenAI-compatible) client for Grok-4 model
|
212 |
-
return OpenAI(
|
213 |
-
api_key=os.getenv("POE_API_KEY"),
|
214 |
-
base_url="https://api.poe.com/v1"
|
215 |
-
)
|
216 |
-
elif model_id == "claude-opus-4.1":
|
217 |
-
# Use Poe (OpenAI-compatible) client for Claude-Opus-4.1
|
218 |
-
return OpenAI(
|
219 |
-
api_key=os.getenv("POE_API_KEY"),
|
220 |
-
base_url="https://api.poe.com/v1"
|
221 |
-
)
|
222 |
-
elif model_id == "step-3":
|
223 |
-
# Use StepFun API client for Step-3 model
|
224 |
-
return OpenAI(
|
225 |
-
api_key=os.getenv("STEP_API_KEY"),
|
226 |
-
base_url="https://api.stepfun.com/v1"
|
227 |
-
)
|
228 |
-
elif model_id == "codestral-2508" or model_id == "mistral-medium-2508":
|
229 |
-
# Use Mistral client for Mistral models
|
230 |
-
return Mistral(api_key=os.getenv("MISTRAL_API_KEY"))
|
231 |
-
elif model_id == "gemini-2.5-flash":
|
232 |
-
# Use Google Gemini (OpenAI-compatible) client
|
233 |
-
return OpenAI(
|
234 |
-
api_key=os.getenv("GEMINI_API_KEY"),
|
235 |
-
base_url="https://generativelanguage.googleapis.com/v1beta/openai/",
|
236 |
-
)
|
237 |
-
elif model_id == "gemini-2.5-pro":
|
238 |
-
# Use Google Gemini Pro (OpenAI-compatible) client
|
239 |
-
return OpenAI(
|
240 |
-
api_key=os.getenv("GEMINI_API_KEY"),
|
241 |
-
base_url="https://generativelanguage.googleapis.com/v1beta/openai/",
|
242 |
-
)
|
243 |
-
elif model_id == "kimi-k2-turbo-preview":
|
244 |
-
# Use Moonshot AI (OpenAI-compatible) client for Kimi K2 Turbo (Preview)
|
245 |
-
return OpenAI(
|
246 |
-
api_key=os.getenv("MOONSHOT_API_KEY"),
|
247 |
-
base_url="https://api.moonshot.ai/v1",
|
248 |
-
)
|
249 |
-
elif model_id == "openai/gpt-oss-120b":
|
250 |
-
provider = "groq"
|
251 |
-
elif model_id == "openai/gpt-oss-20b":
|
252 |
-
provider = "groq"
|
253 |
-
elif model_id == "moonshotai/Kimi-K2-Instruct":
|
254 |
-
provider = "groq"
|
255 |
-
elif model_id == "Qwen/Qwen3-235B-A22B":
|
256 |
-
provider = "cerebras"
|
257 |
-
elif model_id == "Qwen/Qwen3-235B-A22B-Instruct-2507":
|
258 |
-
provider = "cerebras"
|
259 |
-
elif model_id == "Qwen/Qwen3-32B":
|
260 |
-
provider = "cerebras"
|
261 |
-
elif model_id == "Qwen/Qwen3-235B-A22B-Thinking-2507":
|
262 |
-
provider = "cerebras"
|
263 |
-
elif model_id == "Qwen/Qwen3-Coder-480B-A35B-Instruct":
|
264 |
-
provider = "cerebras"
|
265 |
-
elif model_id == "deepseek-ai/DeepSeek-V3.1":
|
266 |
-
provider = "novita"
|
267 |
-
elif model_id == "zai-org/GLM-4.5":
|
268 |
-
provider = "fireworks-ai"
|
269 |
-
return InferenceClient(
|
270 |
-
provider=provider,
|
271 |
-
api_key=HF_TOKEN,
|
272 |
-
bill_to="huggingface"
|
273 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils.py
ADDED
@@ -0,0 +1,539 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Utility functions for file handling, text processing, OCR, and general operations.
|
3 |
+
"""
|
4 |
+
|
5 |
+
import os
|
6 |
+
import re
|
7 |
+
import mimetypes
|
8 |
+
import tempfile
|
9 |
+
import uuid
|
10 |
+
import datetime
|
11 |
+
import base64
|
12 |
+
import time
|
13 |
+
import threading
|
14 |
+
import atexit
|
15 |
+
from typing import Dict, List, Optional, Tuple, Union
|
16 |
+
from pathlib import Path
|
17 |
+
|
18 |
+
import PyPDF2
|
19 |
+
import docx
|
20 |
+
import cv2
|
21 |
+
import numpy as np
|
22 |
+
from PIL import Image
|
23 |
+
import pytesseract
|
24 |
+
from huggingface_hub import InferenceClient, HfApi
|
25 |
+
import gradio as gr
|
26 |
+
|
27 |
+
from config import HF_TOKEN, SEARCH_START, DIVIDER, REPLACE_END, TEMP_DIR_TTL_SECONDS
|
28 |
+
|
29 |
+
# Global temp file tracking
|
30 |
+
MEDIA_TEMP_DIR = os.path.join(tempfile.gettempdir(), "anycoder_media")
|
31 |
+
VIDEO_TEMP_DIR = os.path.join(tempfile.gettempdir(), "anycoder_videos")
|
32 |
+
AUDIO_TEMP_DIR = os.path.join(tempfile.gettempdir(), "anycoder_audio")
|
33 |
+
|
34 |
+
_SESSION_MEDIA_FILES: Dict[str, List[str]] = {}
|
35 |
+
_SESSION_VIDEO_FILES: Dict[str, List[str]] = {}
|
36 |
+
_SESSION_AUDIO_FILES: Dict[str, List[str]] = {}
|
37 |
+
_MEDIA_FILES_LOCK = threading.Lock()
|
38 |
+
_VIDEO_FILES_LOCK = threading.Lock()
|
39 |
+
_AUDIO_FILES_LOCK = threading.Lock()
|
40 |
+
|
41 |
+
temp_media_files = {}
|
42 |
+
|
43 |
+
def ensure_temp_dirs():
|
44 |
+
"""Ensure all temporary directories exist"""
|
45 |
+
for temp_dir in [MEDIA_TEMP_DIR, VIDEO_TEMP_DIR, AUDIO_TEMP_DIR]:
|
46 |
+
try:
|
47 |
+
os.makedirs(temp_dir, exist_ok=True)
|
48 |
+
except Exception:
|
49 |
+
pass
|
50 |
+
|
51 |
+
def get_inference_client(model_id: str, provider: str = "auto"):
|
52 |
+
"""Return an InferenceClient based on model_id and provider"""
|
53 |
+
if not HF_TOKEN:
|
54 |
+
raise RuntimeError("HF_TOKEN environment variable is not set")
|
55 |
+
|
56 |
+
# Special API handling for specific models
|
57 |
+
openai_models = {
|
58 |
+
"qwen3-30b-a3b-instruct-2507": {
|
59 |
+
"api_key": os.getenv("DASHSCOPE_API_KEY"),
|
60 |
+
"base_url": "https://dashscope.aliyuncs.com/compatible-mode/v1"
|
61 |
+
},
|
62 |
+
"gpt-5": {
|
63 |
+
"api_key": os.getenv("POE_API_KEY"),
|
64 |
+
"base_url": "https://api.poe.com/v1"
|
65 |
+
},
|
66 |
+
"kimi-k2-turbo-preview": {
|
67 |
+
"api_key": os.getenv("MOONSHOT_API_KEY"),
|
68 |
+
"base_url": "https://api.moonshot.ai/v1"
|
69 |
+
},
|
70 |
+
"gemini-2.5-flash": {
|
71 |
+
"api_key": os.getenv("GEMINI_API_KEY"),
|
72 |
+
"base_url": "https://generativelanguage.googleapis.com/v1beta/openai/"
|
73 |
+
}
|
74 |
+
}
|
75 |
+
|
76 |
+
if model_id in openai_models:
|
77 |
+
from openai import OpenAI
|
78 |
+
config = openai_models[model_id]
|
79 |
+
return OpenAI(api_key=config["api_key"], base_url=config["base_url"])
|
80 |
+
|
81 |
+
# Mistral models
|
82 |
+
if model_id in ("codestral-2508", "mistral-medium-2508"):
|
83 |
+
from mistralai import Mistral
|
84 |
+
return Mistral(api_key=os.getenv("MISTRAL_API_KEY"))
|
85 |
+
|
86 |
+
# Provider-specific routing
|
87 |
+
provider_map = {
|
88 |
+
"openai/gpt-oss-120b": "groq",
|
89 |
+
"openai/gpt-oss-20b": "groq",
|
90 |
+
"Qwen/Qwen3-235B-A22B": "cerebras",
|
91 |
+
"Qwen/Qwen3-Coder-480B-A35B-Instruct": "cerebras",
|
92 |
+
"deepseek-ai/DeepSeek-V3.1": "novita",
|
93 |
+
"zai-org/GLM-4.5": "fireworks-ai"
|
94 |
+
}
|
95 |
+
|
96 |
+
if model_id in provider_map:
|
97 |
+
provider = provider_map[model_id]
|
98 |
+
|
99 |
+
return InferenceClient(
|
100 |
+
provider=provider,
|
101 |
+
api_key=HF_TOKEN,
|
102 |
+
bill_to="huggingface"
|
103 |
+
)
|
104 |
+
|
105 |
+
def remove_code_block(text: str) -> str:
|
106 |
+
"""Remove code block markers from text"""
|
107 |
+
if not text:
|
108 |
+
return text
|
109 |
+
|
110 |
+
patterns = [
|
111 |
+
r'```(?:html|HTML)\n([\s\S]+?)\n```',
|
112 |
+
r'```\n([\s\S]+?)\n```',
|
113 |
+
r'```([\s\S]+?)```'
|
114 |
+
]
|
115 |
+
|
116 |
+
for pattern in patterns:
|
117 |
+
match = re.search(pattern, text, re.DOTALL)
|
118 |
+
if match:
|
119 |
+
extracted = match.group(1).strip()
|
120 |
+
|
121 |
+
# Remove language marker line if present
|
122 |
+
lines = extracted.split('\n', 1)
|
123 |
+
if lines[0].strip().lower() in ['python', 'html', 'css', 'javascript', 'json']:
|
124 |
+
return lines[1] if len(lines) > 1 else ''
|
125 |
+
|
126 |
+
# Handle HTML content with potential prefixes
|
127 |
+
for tag in ['<!DOCTYPE html', '<html']:
|
128 |
+
idx = extracted.find(tag)
|
129 |
+
if idx > 0:
|
130 |
+
return extracted[idx:].strip()
|
131 |
+
|
132 |
+
return extracted
|
133 |
+
|
134 |
+
# Check if the entire text is HTML
|
135 |
+
stripped = text.strip()
|
136 |
+
if stripped.startswith(('<!DOCTYPE html>', '<html', '<')):
|
137 |
+
for tag in ['<!DOCTYPE html', '<html']:
|
138 |
+
idx = stripped.find(tag)
|
139 |
+
if idx > 0:
|
140 |
+
return stripped[idx:].strip()
|
141 |
+
return stripped
|
142 |
+
|
143 |
+
return text.strip()
|
144 |
+
|
145 |
+
def extract_text_from_image(image_path: str) -> str:
|
146 |
+
"""Extract text from image using OCR"""
|
147 |
+
try:
|
148 |
+
# Check if tesseract is available
|
149 |
+
try:
|
150 |
+
pytesseract.get_tesseract_version()
|
151 |
+
except Exception:
|
152 |
+
return "Error: Tesseract OCR is not installed. Please install Tesseract to extract text from images."
|
153 |
+
|
154 |
+
# Read and process image
|
155 |
+
image = cv2.imread(image_path)
|
156 |
+
if image is None:
|
157 |
+
return "Error: Could not read image file"
|
158 |
+
|
159 |
+
# Convert and preprocess
|
160 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
161 |
+
gray = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2GRAY)
|
162 |
+
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
163 |
+
|
164 |
+
# Extract text
|
165 |
+
text = pytesseract.image_to_string(binary, config='--psm 6')
|
166 |
+
return text.strip() if text.strip() else "No text found in image"
|
167 |
+
|
168 |
+
except Exception as e:
|
169 |
+
return f"Error extracting text from image: {e}"
|
170 |
+
|
171 |
+
def extract_text_from_file(file_path: str) -> str:
|
172 |
+
"""Extract text from various file formats"""
|
173 |
+
if not file_path or not os.path.exists(file_path):
|
174 |
+
return ""
|
175 |
+
|
176 |
+
ext = os.path.splitext(file_path)[1].lower()
|
177 |
+
|
178 |
+
try:
|
179 |
+
if ext == ".pdf":
|
180 |
+
with open(file_path, "rb") as f:
|
181 |
+
reader = PyPDF2.PdfReader(f)
|
182 |
+
return "\n".join(page.extract_text() or "" for page in reader.pages)
|
183 |
+
|
184 |
+
elif ext in [".txt", ".md", ".csv"]:
|
185 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
186 |
+
return f.read()
|
187 |
+
|
188 |
+
elif ext == ".docx":
|
189 |
+
doc = docx.Document(file_path)
|
190 |
+
return "\n".join([para.text for para in doc.paragraphs])
|
191 |
+
|
192 |
+
elif ext in [".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".tif", ".gif", ".webp"]:
|
193 |
+
return extract_text_from_image(file_path)
|
194 |
+
|
195 |
+
else:
|
196 |
+
return ""
|
197 |
+
|
198 |
+
except Exception as e:
|
199 |
+
return f"Error extracting text: {e}"
|
200 |
+
|
201 |
+
def compress_media_for_data_uri(media_bytes: bytes, media_type: str = "video", max_size_mb: int = 8) -> bytes:
|
202 |
+
"""Compress media bytes for data URI embedding"""
|
203 |
+
max_size = max_size_mb * 1024 * 1024
|
204 |
+
|
205 |
+
if len(media_bytes) <= max_size:
|
206 |
+
return media_bytes
|
207 |
+
|
208 |
+
print(f"[MediaCompress] {media_type} size {len(media_bytes)} bytes exceeds {max_size_mb}MB limit, attempting compression")
|
209 |
+
|
210 |
+
try:
|
211 |
+
import subprocess
|
212 |
+
|
213 |
+
# Create temp files
|
214 |
+
with tempfile.NamedTemporaryFile(suffix=f'.{media_type[:3]}', delete=False) as temp_input:
|
215 |
+
temp_input.write(media_bytes)
|
216 |
+
temp_input_path = temp_input.name
|
217 |
+
|
218 |
+
temp_output_path = temp_input_path.replace(f'.{media_type[:3]}', f'_compressed.{media_type[:3]}')
|
219 |
+
|
220 |
+
try:
|
221 |
+
if media_type == "video":
|
222 |
+
# Compress video with ffmpeg
|
223 |
+
subprocess.run([
|
224 |
+
'ffmpeg', '-i', temp_input_path,
|
225 |
+
'-vcodec', 'libx264', '-crf', '30', '-preset', 'fast',
|
226 |
+
'-vf', 'scale=480:-1', '-r', '15',
|
227 |
+
'-an', # Remove audio
|
228 |
+
'-y', temp_output_path
|
229 |
+
], check=True, capture_output=True, stderr=subprocess.DEVNULL)
|
230 |
+
else: # audio
|
231 |
+
subprocess.run([
|
232 |
+
'ffmpeg', '-i', temp_input_path,
|
233 |
+
'-codec:a', 'libmp3lame', '-b:a', '64k',
|
234 |
+
'-y', temp_output_path
|
235 |
+
], check=True, capture_output=True, stderr=subprocess.DEVNULL)
|
236 |
+
|
237 |
+
# Read compressed media
|
238 |
+
with open(temp_output_path, 'rb') as f:
|
239 |
+
compressed_bytes = f.read()
|
240 |
+
|
241 |
+
print(f"[MediaCompress] Compressed from {len(media_bytes)} to {len(compressed_bytes)} bytes")
|
242 |
+
return compressed_bytes
|
243 |
+
|
244 |
+
except (subprocess.CalledProcessError, FileNotFoundError):
|
245 |
+
print(f"[MediaCompress] ffmpeg compression failed, using original {media_type}")
|
246 |
+
return media_bytes
|
247 |
+
finally:
|
248 |
+
# Clean up temp files
|
249 |
+
for path in [temp_input_path, temp_output_path]:
|
250 |
+
try:
|
251 |
+
if os.path.exists(path):
|
252 |
+
os.remove(path)
|
253 |
+
except Exception:
|
254 |
+
pass
|
255 |
+
|
256 |
+
except Exception as e:
|
257 |
+
print(f"[MediaCompress] Compression failed: {e}, using original {media_type}")
|
258 |
+
return media_bytes
|
259 |
+
|
260 |
+
def create_temp_media_url(media_bytes: bytes, filename: str, media_type: str = "image",
|
261 |
+
session_id: Optional[str] = None) -> str:
|
262 |
+
"""Create a temporary file and return a local URL for preview"""
|
263 |
+
try:
|
264 |
+
# Create unique filename
|
265 |
+
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
266 |
+
unique_id = str(uuid.uuid4())[:8]
|
267 |
+
base_name, ext = os.path.splitext(filename)
|
268 |
+
unique_filename = f"{media_type}_{timestamp}_{unique_id}_{base_name}{ext}"
|
269 |
+
|
270 |
+
# Create temporary file
|
271 |
+
ensure_temp_dirs()
|
272 |
+
temp_path = os.path.join(MEDIA_TEMP_DIR, unique_filename)
|
273 |
+
|
274 |
+
with open(temp_path, 'wb') as f:
|
275 |
+
f.write(media_bytes)
|
276 |
+
|
277 |
+
# Track file for cleanup
|
278 |
+
if session_id:
|
279 |
+
track_session_media_file(session_id, temp_path)
|
280 |
+
|
281 |
+
# Store file info
|
282 |
+
file_id = f"{media_type}_{unique_id}"
|
283 |
+
temp_media_files[file_id] = {
|
284 |
+
'path': temp_path,
|
285 |
+
'filename': filename,
|
286 |
+
'media_type': media_type,
|
287 |
+
'media_bytes': media_bytes
|
288 |
+
}
|
289 |
+
|
290 |
+
file_url = f"file://{temp_path}"
|
291 |
+
print(f"[TempMedia] Created temporary {media_type} file: {file_url}")
|
292 |
+
return file_url
|
293 |
+
|
294 |
+
except Exception as e:
|
295 |
+
print(f"[TempMedia] Failed to create temporary file: {str(e)}")
|
296 |
+
return f"Error creating temporary {media_type} file: {str(e)}"
|
297 |
+
|
298 |
+
def track_session_media_file(session_id: Optional[str], file_path: str) -> None:
|
299 |
+
"""Track a media file for session-based cleanup"""
|
300 |
+
if not session_id or not file_path:
|
301 |
+
return
|
302 |
+
|
303 |
+
with _MEDIA_FILES_LOCK:
|
304 |
+
if session_id not in _SESSION_MEDIA_FILES:
|
305 |
+
_SESSION_MEDIA_FILES[session_id] = []
|
306 |
+
_SESSION_MEDIA_FILES[session_id].append(file_path)
|
307 |
+
|
308 |
+
def cleanup_session_media(session_id: Optional[str]) -> None:
|
309 |
+
"""Clean up media files for a specific session"""
|
310 |
+
if not session_id:
|
311 |
+
return
|
312 |
+
|
313 |
+
with _MEDIA_FILES_LOCK:
|
314 |
+
files_to_clean = _SESSION_MEDIA_FILES.pop(session_id, [])
|
315 |
+
|
316 |
+
for path in files_to_clean:
|
317 |
+
try:
|
318 |
+
if path and os.path.exists(path):
|
319 |
+
os.unlink(path)
|
320 |
+
except Exception:
|
321 |
+
pass
|
322 |
+
|
323 |
+
def reap_old_media(ttl_seconds: int = TEMP_DIR_TTL_SECONDS) -> None:
|
324 |
+
"""Delete old media files based on modification time"""
|
325 |
+
try:
|
326 |
+
ensure_temp_dirs()
|
327 |
+
now_ts = time.time()
|
328 |
+
|
329 |
+
for temp_dir in [MEDIA_TEMP_DIR, VIDEO_TEMP_DIR, AUDIO_TEMP_DIR]:
|
330 |
+
if not os.path.exists(temp_dir):
|
331 |
+
continue
|
332 |
+
|
333 |
+
for name in os.listdir(temp_dir):
|
334 |
+
path = os.path.join(temp_dir, name)
|
335 |
+
if os.path.isfile(path):
|
336 |
+
try:
|
337 |
+
mtime = os.path.getmtime(path)
|
338 |
+
if (now_ts - mtime) > ttl_seconds:
|
339 |
+
os.unlink(path)
|
340 |
+
except Exception:
|
341 |
+
pass
|
342 |
+
except Exception:
|
343 |
+
pass
|
344 |
+
|
345 |
+
def cleanup_all_temp_media():
|
346 |
+
"""Clean up all temporary media files"""
|
347 |
+
try:
|
348 |
+
print("[Cleanup] Cleaning up temporary media files...")
|
349 |
+
|
350 |
+
# Clean up temp_media_files registry
|
351 |
+
for file_id, file_info in temp_media_files.items():
|
352 |
+
try:
|
353 |
+
if os.path.exists(file_info['path']):
|
354 |
+
os.unlink(file_info['path'])
|
355 |
+
except Exception:
|
356 |
+
pass
|
357 |
+
temp_media_files.clear()
|
358 |
+
|
359 |
+
# Clean up all session files
|
360 |
+
with _MEDIA_FILES_LOCK:
|
361 |
+
for session_files in _SESSION_MEDIA_FILES.values():
|
362 |
+
for path in session_files:
|
363 |
+
try:
|
364 |
+
if path and os.path.exists(path):
|
365 |
+
os.unlink(path)
|
366 |
+
except Exception:
|
367 |
+
pass
|
368 |
+
_SESSION_MEDIA_FILES.clear()
|
369 |
+
|
370 |
+
print("[Cleanup] Temporary media cleanup completed")
|
371 |
+
except Exception as e:
|
372 |
+
print(f"[Cleanup] Error during cleanup: {str(e)}")
|
373 |
+
|
374 |
+
def process_image_for_model(image) -> Optional[str]:
|
375 |
+
"""Convert image to base64 for model input"""
|
376 |
+
if image is None:
|
377 |
+
return None
|
378 |
+
|
379 |
+
import io
|
380 |
+
import base64
|
381 |
+
import numpy as np
|
382 |
+
from PIL import Image as PILImage
|
383 |
+
|
384 |
+
# Handle numpy array from Gradio
|
385 |
+
if isinstance(image, np.ndarray):
|
386 |
+
image = PILImage.fromarray(image)
|
387 |
+
|
388 |
+
buffer = io.BytesIO()
|
389 |
+
image.save(buffer, format='PNG')
|
390 |
+
img_str = base64.b64encode(buffer.getvalue()).decode('utf-8')
|
391 |
+
return f"data:image/png;base64,{img_str}"
|
392 |
+
|
393 |
+
def create_multimodal_message(text: str, image=None) -> Dict:
|
394 |
+
"""Create a chat message with optional image"""
|
395 |
+
if image is None:
|
396 |
+
return {"role": "user", "content": text}
|
397 |
+
|
398 |
+
# For broad provider compatibility, use string content with note
|
399 |
+
return {"role": "user", "content": f"{text}\n\n[An image was provided as reference.]"}
|
400 |
+
|
401 |
+
def apply_search_replace_changes(original_content: str, changes_text: str) -> str:
|
402 |
+
"""Apply search/replace changes to content"""
|
403 |
+
if not changes_text.strip():
|
404 |
+
return original_content
|
405 |
+
|
406 |
+
# CSS rule fallback for non-block formats
|
407 |
+
if (SEARCH_START not in changes_text) and (DIVIDER not in changes_text) and (REPLACE_END not in changes_text):
|
408 |
+
try:
|
409 |
+
updated_content = original_content
|
410 |
+
replaced_any_rule = False
|
411 |
+
|
412 |
+
# Find CSS-like rule blocks
|
413 |
+
css_blocks = re.findall(r"([^{]+)\{([\s\S]*?)\}", changes_text, flags=re.MULTILINE)
|
414 |
+
|
415 |
+
for selector_raw, body_raw in css_blocks:
|
416 |
+
selector = selector_raw.strip()
|
417 |
+
body = body_raw.strip()
|
418 |
+
if not selector:
|
419 |
+
continue
|
420 |
+
|
421 |
+
pattern = re.compile(rf"({re.escape(selector)}\s*\{{)([\s\S]*?)(\}})")
|
422 |
+
|
423 |
+
def _replace_rule(match):
|
424 |
+
nonlocal replaced_any_rule
|
425 |
+
replaced_any_rule = True
|
426 |
+
prefix, existing_body, suffix = match.groups()
|
427 |
+
|
428 |
+
# Preserve indentation
|
429 |
+
first_line_indent = ""
|
430 |
+
for line in existing_body.splitlines():
|
431 |
+
stripped = line.lstrip(" \t")
|
432 |
+
if stripped:
|
433 |
+
first_line_indent = line[: len(line) - len(stripped)]
|
434 |
+
break
|
435 |
+
|
436 |
+
if body:
|
437 |
+
new_body_lines = [first_line_indent + line if line.strip() else line for line in body.splitlines()]
|
438 |
+
new_body_text = "\n" + "\n".join(new_body_lines) + "\n"
|
439 |
+
else:
|
440 |
+
new_body_text = existing_body
|
441 |
+
|
442 |
+
return f"{prefix}{new_body_text}{suffix}"
|
443 |
+
|
444 |
+
updated_content, num_subs = pattern.subn(_replace_rule, updated_content, count=1)
|
445 |
+
|
446 |
+
if replaced_any_rule:
|
447 |
+
return updated_content
|
448 |
+
except Exception:
|
449 |
+
pass
|
450 |
+
|
451 |
+
# Parse search/replace blocks
|
452 |
+
blocks = []
|
453 |
+
current_block = ""
|
454 |
+
lines = changes_text.split('\n')
|
455 |
+
|
456 |
+
for line in lines:
|
457 |
+
if line.strip() == SEARCH_START:
|
458 |
+
if current_block.strip():
|
459 |
+
blocks.append(current_block.strip())
|
460 |
+
current_block = line + '\n'
|
461 |
+
elif line.strip() == REPLACE_END:
|
462 |
+
current_block += line + '\n'
|
463 |
+
blocks.append(current_block.strip())
|
464 |
+
current_block = ""
|
465 |
+
else:
|
466 |
+
current_block += line + '\n'
|
467 |
+
|
468 |
+
if current_block.strip():
|
469 |
+
blocks.append(current_block.strip())
|
470 |
+
|
471 |
+
modified_content = original_content
|
472 |
+
|
473 |
+
for block in blocks:
|
474 |
+
if not block.strip():
|
475 |
+
continue
|
476 |
+
|
477 |
+
lines = block.split('\n')
|
478 |
+
search_lines = []
|
479 |
+
replace_lines = []
|
480 |
+
in_search = False
|
481 |
+
in_replace = False
|
482 |
+
|
483 |
+
for line in lines:
|
484 |
+
if line.strip() == SEARCH_START:
|
485 |
+
in_search = True
|
486 |
+
in_replace = False
|
487 |
+
elif line.strip() == DIVIDER:
|
488 |
+
in_search = False
|
489 |
+
in_replace = True
|
490 |
+
elif line.strip() == REPLACE_END:
|
491 |
+
in_replace = False
|
492 |
+
elif in_search:
|
493 |
+
search_lines.append(line)
|
494 |
+
elif in_replace:
|
495 |
+
replace_lines.append(line)
|
496 |
+
|
497 |
+
if search_lines:
|
498 |
+
search_text = '\n'.join(search_lines).strip()
|
499 |
+
replace_text = '\n'.join(replace_lines).strip()
|
500 |
+
|
501 |
+
if search_text in modified_content:
|
502 |
+
modified_content = modified_content.replace(search_text, replace_text)
|
503 |
+
else:
|
504 |
+
print(f"Warning: Search text not found: {search_text[:100]}...")
|
505 |
+
|
506 |
+
return modified_content
|
507 |
+
|
508 |
+
def validate_video_html(video_html: str) -> bool:
|
509 |
+
"""Validate that video HTML is well-formed and safe"""
|
510 |
+
try:
|
511 |
+
if not video_html or not video_html.strip():
|
512 |
+
return False
|
513 |
+
|
514 |
+
if '<video' not in video_html or '</video>' not in video_html:
|
515 |
+
return False
|
516 |
+
|
517 |
+
if '<source' not in video_html:
|
518 |
+
return False
|
519 |
+
|
520 |
+
# Check for valid video sources
|
521 |
+
has_data_uri = 'data:video/mp4;base64,' in video_html
|
522 |
+
has_hf_url = 'https://huggingface.co/datasets/' in video_html and '/resolve/main/' in video_html
|
523 |
+
has_file_url = 'file://' in video_html
|
524 |
+
|
525 |
+
if not (has_data_uri or has_hf_url or has_file_url):
|
526 |
+
return False
|
527 |
+
|
528 |
+
# Basic HTML structure validation
|
529 |
+
video_start = video_html.find('<video')
|
530 |
+
video_end = video_html.find('</video>') + 8
|
531 |
+
if video_start == -1 or video_end == 7:
|
532 |
+
return False
|
533 |
+
|
534 |
+
return True
|
535 |
+
except Exception:
|
536 |
+
return False
|
537 |
+
|
538 |
+
# Register cleanup handler
|
539 |
+
atexit.register(cleanup_all_temp_media)
|