# METEHAN AYHAN import streamlit as st from PIL import Image import numpy as np import tensorflow as tf model = tf.keras.models.load_model('model.h5') classes = { 0:'Speed limit (20km/h)', 1:'Speed limit (30km/h)', 2:'Speed limit (50km/h)', 3:'Speed limit (60km/h)', 4:'Speed limit (70km/h)', 5:'Speed limit (80km/h)', 6:'End of speed limit (80km/h)', 7:'Speed limit (100km/h)', 8:'Speed limit (120km/h)', 9:'No passing', 10:'No passing veh over 3.5 tons', 11:'Right-of-way at intersection', 12:'Priority road', 13:'Yield', 14:'Stop', 15:'No vehicles', 16:'Veh > 3.5 tons prohibited', 17:'No entry', 18:'General caution', 19:'Dangerous curve left', 20:'Dangerous curve right', 21:'Double curve', 22:'Bumpy road', 23:'Slippery road', 24:'Road narrows on the right', 25:'Road work', 26:'Traffic signals', 27:'Pedestrians', 28:'Children crossing', 29:'Bicycles crossing', 30:'Beware of ice/snow', 31:'Wild animals crossing', 32:'End speed + passing limits', 33:'Turn right ahead', 34:'Turn left ahead', 35:'Ahead only', 36:'Go straight or right', 37:'Go straight or left', 38:'Keep right', 39:'Keep left', 40:'Roundabout mandatory', 41:'End of no passing', 42:'End no passing veh > 3.5 tons' } st.title('German Traffic Sign Recognition - Metehan Ayhan') st.write("Upload an image of a traffic sign to predict its class.") uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"]) if uploaded_file is not None: image = Image.open(uploaded_file) st.image(image, caption='Uploaded Traffic Sign.', use_column_width=True) st.write("") st.write("Classifying...") image = image.resize((32, 32)) image = np.array(image) image = np.expand_dims(image, axis=0) # Modelin beklediği şekil predictions = model.predict(image) predicted_class = np.argmax(predictions[0]) st.write(f"Prediction: {classes[predicted_class]}")