Spaces:
Sleeping
Sleeping
| import os | |
| import torch | |
| from transformers import ( | |
| AutoTokenizer, | |
| AutoModelForCausalLM, | |
| BitsAndBytesConfig, | |
| pipeline | |
| ) | |
| import streamlit as st | |
| from langchain_community.vectorstores import FAISS | |
| from langchain_community.embeddings import HuggingFaceEmbeddings | |
| from langchain_community.llms import HuggingFacePipeline | |
| from transformers import BitsAndBytesConfig | |
| from langchain.prompts import PromptTemplate | |
| from langchain.schema.runnable import RunnablePassthrough | |
| from langchain.chains import LLMChain | |
| import transformers | |
| import transformers | |
| from transformers import pipeline | |
| import transformers | |
| model_name='mistralai/Mistral-7B-Instruct-v0.1' | |
| from huggingface_hub import login | |
| login(token=st.secrets["HF_TOKEN"]) | |
| model_config = transformers.AutoConfig.from_pretrained( | |
| model_name, | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
| tokenizer.pad_token = tokenizer.eos_token | |
| tokenizer.padding_side = "right" | |
| ################################################################# | |
| # bitsandbytes parameters | |
| ################################################################# | |
| # Activate 4-bit precision base model loading | |
| use_4bit = True | |
| # Compute dtype for 4-bit base models | |
| bnb_4bit_compute_dtype = "float16" | |
| # Quantization type (fp4 or nf4) | |
| bnb_4bit_quant_type = "nf4" | |
| # Activate nested quantization for 4-bit base models (double quantization) | |
| use_nested_quant = False | |
| ################################################################# | |
| # Set up quantization config | |
| ################################################################# | |
| compute_dtype = getattr(torch, bnb_4bit_compute_dtype) | |
| bnb_config = BitsAndBytesConfig( | |
| load_in_4bit=use_4bit, | |
| bnb_4bit_quant_type=bnb_4bit_quant_type, | |
| bnb_4bit_compute_dtype=compute_dtype, | |
| bnb_4bit_use_double_quant=use_nested_quant, | |
| ) | |
| ############################################################# | |
| # Load pre-trained config | |
| ################################################################# | |
| model = AutoModelForCausalLM.from_pretrained( | |
| "mistralai/Mistral-7B-Instruct-v0.1", | |
| quantization_config=bnb_config, | |
| ) | |
| # Connect query to FAISS index using a retriever | |
| retriever = db.as_retriever( | |
| search_type="mmr", | |
| search_kwargs={'k': 1} | |
| ) | |
| from langchain.llms import HuggingFacePipeline | |
| from langchain.prompts import PromptTemplate | |
| from langchain.embeddings.huggingface import HuggingFaceEmbeddings | |
| text_generation_pipeline = transformers.pipeline( | |
| model=model, | |
| tokenizer=tokenizer, | |
| task="text-generation", | |
| temperature=0.02, | |
| repetition_penalty=1.1, | |
| return_full_text=True, | |
| max_new_tokens=512, | |
| ) | |
| prompt_template = """ | |
| ### [INST] | |
| Instruction: You are a Q&A assistant. Your goal is to answer questions as accurately as possible based on the instructions and context provided without using prior knowledge.You answer in FRENCH | |
| Analyse carefully the context and provide a direct answer based on the context. | |
| Answer in french only | |
| {context} | |
| Vous devez répondre aux questions en français. | |
| ### QUESTION: | |
| {question} | |
| [/INST] | |
| Answer in french only | |
| Vous devez répondre aux questions en français. | |
| """ | |
| mistral_llm = HuggingFacePipeline(pipeline=text_generation_pipeline) | |
| # Create prompt from prompt template | |
| prompt = PromptTemplate( | |
| input_variables=["question"], | |
| template=prompt_template, | |
| ) | |
| # Create llm chain | |
| llm_chain = LLMChain(llm=mistral_llm, prompt=prompt) | |
| from langchain.chains import RetrievalQA | |
| retriever.search_kwargs = {'k':1} | |
| qa = RetrievalQA.from_chain_type( | |
| llm=mistral_llm, | |
| chain_type="stuff", | |
| retriever=retriever, | |
| chain_type_kwargs={"prompt": prompt}, | |
| ) | |
| import streamlit as st | |
| # Streamlit interface | |
| st.title("Chatbot Interface") | |
| # Define function to handle user input and display chatbot response | |
| def chatbot_response(user_input): | |
| response = qa.get_answer(user_input) | |
| return response | |
| # Streamlit components | |
| user_input = st.text_input("You:", "") | |
| submit_button = st.button("Send") | |
| # Handle user input | |
| if submit_button: | |
| if user_input.strip() != "": | |
| bot_response = chatbot_response(user_input) | |
| st.text_area("Bot:", value=bot_response, height=200) | |
| else: | |
| st.warning("Please enter a message.") |