Spaces:
Running
Running
Update sentiment_tools.py
Browse files- sentiment_tools.py +44 -42
sentiment_tools.py
CHANGED
@@ -1,45 +1,47 @@
|
|
1 |
-
|
2 |
-
from
|
|
|
|
|
3 |
|
4 |
-
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
"
|
9 |
-
|
10 |
-
# Simple sentiment analysis without heavy models for faster execution
|
11 |
-
text_lower = text.lower()
|
12 |
-
|
13 |
-
# Positive indicators
|
14 |
-
positive_words = [
|
15 |
-
'bull', 'bullish', 'up', 'rise', 'rising', 'gain', 'gains',
|
16 |
-
'positive', 'strong', 'growth', 'increase', 'rally', 'surge',
|
17 |
-
'optimistic', 'good', 'great', 'excellent', 'buy', 'moon'
|
18 |
-
]
|
19 |
-
|
20 |
-
# Negative indicators
|
21 |
-
negative_words = [
|
22 |
-
'bear', 'bearish', 'down', 'fall', 'falling', 'loss', 'losses',
|
23 |
-
'negative', 'weak', 'decline', 'decrease', 'crash', 'dump',
|
24 |
-
'pessimistic', 'bad', 'poor', 'terrible', 'sell', 'fear'
|
25 |
-
]
|
26 |
-
|
27 |
-
positive_count = sum(1 for word in positive_words if word in text_lower)
|
28 |
-
negative_count = sum(1 for word in negative_words if word in text_lower)
|
29 |
-
|
30 |
-
if positive_count > negative_count:
|
31 |
-
confidence = min(0.9, 0.6 + (positive_count - negative_count) * 0.1)
|
32 |
-
return f"Positive (confidence: {confidence:.1f})"
|
33 |
-
elif negative_count > positive_count:
|
34 |
-
confidence = min(0.9, 0.6 + (negative_count - positive_count) * 0.1)
|
35 |
-
return f"Negative (confidence: {confidence:.1f})"
|
36 |
-
else:
|
37 |
-
return "Neutral (confidence: 0.5)"
|
38 |
-
|
39 |
-
except Exception as e:
|
40 |
-
return f"Sentiment analysis error: {str(e)}"
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# sentiment_tools.py - CrewAI Native Version
|
2 |
+
from crewai.tools import BaseTool
|
3 |
+
from typing import Type
|
4 |
+
from pydantic import BaseModel, Field
|
5 |
|
6 |
+
class SentimentInput(BaseModel):
|
7 |
+
"""Input schema for SentimentTool."""
|
8 |
+
text: str = Field(..., description="Text to analyze for sentiment")
|
9 |
|
10 |
+
class SentimentTool(BaseTool):
|
11 |
+
name: str = "Analyze Sentiment"
|
12 |
+
description: str = "Analyzes the sentiment of a given text using keyword analysis"
|
13 |
+
args_schema: Type[BaseModel] = SentimentInput
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
def _run(self, text: str) -> str:
|
16 |
+
try:
|
17 |
+
# Simple sentiment analysis without heavy models for faster execution
|
18 |
+
text_lower = text.lower()
|
19 |
+
|
20 |
+
# Positive indicators
|
21 |
+
positive_words = [
|
22 |
+
'bull', 'bullish', 'up', 'rise', 'rising', 'gain', 'gains',
|
23 |
+
'positive', 'strong', 'growth', 'increase', 'rally', 'surge',
|
24 |
+
'optimistic', 'good', 'great', 'excellent', 'buy', 'moon'
|
25 |
+
]
|
26 |
+
|
27 |
+
# Negative indicators
|
28 |
+
negative_words = [
|
29 |
+
'bear', 'bearish', 'down', 'fall', 'falling', 'loss', 'losses',
|
30 |
+
'negative', 'weak', 'decline', 'decrease', 'crash', 'dump',
|
31 |
+
'pessimistic', 'bad', 'poor', 'terrible', 'sell', 'fear'
|
32 |
+
]
|
33 |
+
|
34 |
+
positive_count = sum(1 for word in positive_words if word in text_lower)
|
35 |
+
negative_count = sum(1 for word in negative_words if word in text_lower)
|
36 |
+
|
37 |
+
if positive_count > negative_count:
|
38 |
+
confidence = min(0.9, 0.6 + (positive_count - negative_count) * 0.1)
|
39 |
+
return f"Positive (confidence: {confidence:.1f})"
|
40 |
+
elif negative_count > positive_count:
|
41 |
+
confidence = min(0.9, 0.6 + (negative_count - positive_count) * 0.1)
|
42 |
+
return f"Negative (confidence: {confidence:.1f})"
|
43 |
+
else:
|
44 |
+
return "Neutral (confidence: 0.5)"
|
45 |
+
|
46 |
+
except Exception as e:
|
47 |
+
return f"Sentiment analysis error: {str(e)}"
|