Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,123 +1,287 @@
|
|
1 |
import streamlit as st
|
2 |
import plotly.graph_objs as go
|
|
|
|
|
3 |
from main import CryptoCrew
|
4 |
-
import asyncio
|
5 |
import time
|
6 |
import os
|
|
|
7 |
|
8 |
-
st.set_page_config(page_title="Crypto Analyst", page_icon="π", layout="wide")
|
9 |
|
10 |
-
|
11 |
-
st.markdown("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
15 |
def analyze_crypto(crypto_name):
|
16 |
crypto_crew = CryptoCrew(crypto_name.lower())
|
17 |
return crypto_crew.run()
|
18 |
|
19 |
-
|
20 |
-
|
21 |
with col1:
|
22 |
-
crypto = st.text_input("Enter cryptocurrency name:", placeholder="bitcoin, ethereum, cardano...")
|
23 |
|
24 |
with col2:
|
25 |
st.markdown("<br>", unsafe_allow_html=True)
|
26 |
-
analyze_btn = st.button("π Analyze", type="primary")
|
27 |
|
28 |
if analyze_btn and crypto:
|
29 |
start_time = time.time()
|
30 |
|
31 |
-
with st.spinner("π
|
32 |
try:
|
33 |
result = analyze_crypto(crypto)
|
34 |
end_time = time.time()
|
35 |
|
36 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
col1, col2, col3 = st.columns(3)
|
38 |
with col1:
|
39 |
-
|
|
|
|
|
|
|
40 |
with col2:
|
41 |
-
|
|
|
|
|
42 |
with col3:
|
43 |
-
|
|
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
# Create sentiment chart
|
54 |
categories = list(sentiment_data.keys())
|
55 |
values = []
|
56 |
colors = []
|
|
|
57 |
|
58 |
-
for sentiment in sentiment_data.
|
|
|
59 |
if sentiment == "Positive":
|
60 |
values.append(1)
|
61 |
-
colors.append('#
|
62 |
elif sentiment == "Negative":
|
63 |
values.append(-1)
|
64 |
-
colors.append('#
|
65 |
else:
|
66 |
values.append(0)
|
67 |
-
colors.append('#
|
68 |
|
|
|
69 |
fig = go.Figure(data=[go.Bar(
|
70 |
x=categories,
|
71 |
y=values,
|
72 |
marker_color=colors,
|
73 |
-
text=
|
74 |
-
textposition='auto'
|
|
|
75 |
)])
|
76 |
|
77 |
fig.update_layout(
|
78 |
-
title="Sentiment Distribution",
|
79 |
-
xaxis_title="Analysis
|
80 |
yaxis_title="Sentiment Score",
|
81 |
-
yaxis=dict(
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
)
|
85 |
|
86 |
st.plotly_chart(fig, use_container_width=True)
|
87 |
|
88 |
-
#
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
except Exception as e:
|
93 |
st.error(f"Analysis failed: {str(e)}")
|
94 |
-
st.info("
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
-
# Sidebar
|
97 |
with st.sidebar:
|
98 |
-
st.header("βοΈ
|
99 |
|
100 |
-
#
|
101 |
-
import os
|
102 |
api_key_status = "β
Connected" if os.getenv("TOGETHER_API_KEY") else "β Missing API Key"
|
103 |
-
st.write(f"Together AI
|
104 |
|
105 |
if not os.getenv("TOGETHER_API_KEY"):
|
106 |
-
st.error("Add TOGETHER_API_KEY
|
|
|
|
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
st.markdown("""
|
109 |
-
**
|
110 |
-
-
|
111 |
-
-
|
112 |
-
-
|
113 |
""")
|
114 |
|
|
|
115 |
st.markdown("---")
|
116 |
-
st.markdown("### π
|
117 |
-
cols = st.columns(
|
118 |
with cols[0]:
|
119 |
-
st.metric("
|
120 |
with cols[1]:
|
121 |
-
st.metric("
|
122 |
with cols[2]:
|
123 |
-
st.metric("
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import plotly.graph_objs as go
|
3 |
+
import plotly.express as px
|
4 |
+
from plotly.subplots import make_subplots
|
5 |
from main import CryptoCrew
|
|
|
6 |
import time
|
7 |
import os
|
8 |
+
import pandas as pd
|
9 |
|
10 |
+
st.set_page_config(page_title="Advanced Crypto Analyst", page_icon="π", layout="wide")
|
11 |
|
12 |
+
# Custom CSS for better styling
|
13 |
+
st.markdown("""
|
14 |
+
<style>
|
15 |
+
.metric-card {
|
16 |
+
background-color: #f0f2f6;
|
17 |
+
padding: 1rem;
|
18 |
+
border-radius: 0.5rem;
|
19 |
+
margin: 0.5rem 0;
|
20 |
+
}
|
21 |
+
.positive { color: #00ff00; }
|
22 |
+
.negative { color: #ff0000; }
|
23 |
+
.neutral { color: #808080; }
|
24 |
+
</style>
|
25 |
+
""", unsafe_allow_html=True)
|
26 |
|
27 |
+
st.title("β‘ Advanced Crypto Analyst")
|
28 |
+
st.markdown("*Powered by Together AI with Enhanced Multi-Agent Analysis*")
|
29 |
+
|
30 |
+
# Enhanced caching with longer TTL for detailed analysis
|
31 |
+
@st.cache_data(ttl=600) # Cache for 10 minutes
|
32 |
def analyze_crypto(crypto_name):
|
33 |
crypto_crew = CryptoCrew(crypto_name.lower())
|
34 |
return crypto_crew.run()
|
35 |
|
36 |
+
# Input section
|
37 |
+
col1, col2 = st.columns([3, 1])
|
38 |
with col1:
|
39 |
+
crypto = st.text_input("Enter cryptocurrency name:", placeholder="bitcoin, ethereum, solana, cardano...")
|
40 |
|
41 |
with col2:
|
42 |
st.markdown("<br>", unsafe_allow_html=True)
|
43 |
+
analyze_btn = st.button("π Analyze", type="primary", use_container_width=True)
|
44 |
|
45 |
if analyze_btn and crypto:
|
46 |
start_time = time.time()
|
47 |
|
48 |
+
with st.spinner("π Performing comprehensive analysis... This may take 30-60 seconds for detailed results!"):
|
49 |
try:
|
50 |
result = analyze_crypto(crypto)
|
51 |
end_time = time.time()
|
52 |
|
53 |
+
# Enhanced header metrics
|
54 |
+
st.markdown("## π Analysis Dashboard")
|
55 |
+
|
56 |
+
col1, col2, col3, col4 = st.columns(4)
|
57 |
+
with col1:
|
58 |
+
st.metric("Analysis Time", f"{end_time - start_time:.1f}s", "β
Complete")
|
59 |
+
with col2:
|
60 |
+
rec = result.get("recommendation", {}).get("action", "HOLD")
|
61 |
+
confidence = result.get("recommendation", {}).get("confidence", "Medium")
|
62 |
+
st.metric("Recommendation", rec, f"Confidence: {confidence}")
|
63 |
+
with col3:
|
64 |
+
risk = result.get("risk_assessment", "Moderate Risk")
|
65 |
+
st.metric("Risk Level", risk)
|
66 |
+
with col4:
|
67 |
+
last_updated = result.get("last_updated", "Unknown")
|
68 |
+
st.metric("Last Updated", last_updated.split()[1] if " " in last_updated else "N/A")
|
69 |
+
|
70 |
+
# Market Data Section
|
71 |
+
st.markdown("## π° Market Metrics")
|
72 |
+
market_data = result.get("market_data", {})
|
73 |
+
|
74 |
col1, col2, col3 = st.columns(3)
|
75 |
with col1:
|
76 |
+
price = market_data.get("current_price", "N/A")
|
77 |
+
price_change_24h = market_data.get("price_change_24h", "N/A")
|
78 |
+
st.metric("Current Price", price, price_change_24h)
|
79 |
+
|
80 |
with col2:
|
81 |
+
market_cap = market_data.get("market_cap", "N/A")
|
82 |
+
st.metric("Market Cap", market_cap)
|
83 |
+
|
84 |
with col3:
|
85 |
+
volume_24h = market_data.get("volume_24h", "N/A")
|
86 |
+
st.metric("24h Volume", volume_24h)
|
87 |
|
88 |
+
col4, col5, col6 = st.columns(3)
|
89 |
+
with col4:
|
90 |
+
price_change_7d = market_data.get("price_change_7d", "N/A")
|
91 |
+
st.metric("7-Day Change", price_change_7d)
|
92 |
+
with col5:
|
93 |
+
dominance = market_data.get("market_dominance", "N/A")
|
94 |
+
st.metric("Market Dominance", dominance)
|
95 |
+
with col6:
|
96 |
+
st.metric("Analysis Depth", "Advanced", "π― Multi-Agent")
|
97 |
+
|
98 |
+
# Technical Analysis Section
|
99 |
+
st.markdown("## π Technical Analysis")
|
100 |
+
technical_data = result.get("technical_data", {})
|
101 |
|
102 |
+
col1, col2 = st.columns(2)
|
103 |
+
with col1:
|
104 |
+
rsi = technical_data.get("rsi", "N/A")
|
105 |
+
rsi_signal = technical_data.get("rsi_signal", "Neutral")
|
106 |
+
st.metric("RSI (14)", rsi, rsi_signal)
|
107 |
+
|
108 |
+
trend = technical_data.get("trend", "Neutral")
|
109 |
+
st.metric("Current Trend", trend)
|
110 |
+
|
111 |
+
with col2:
|
112 |
+
ma_7d = technical_data.get("moving_average_7d", "N/A")
|
113 |
+
st.metric("7-Day MA", ma_7d)
|
114 |
+
|
115 |
+
support = technical_data.get("support_level", "N/A")
|
116 |
+
resistance = technical_data.get("resistance_level", "N/A")
|
117 |
+
st.metric("Support | Resistance", f"{support} | {resistance}")
|
118 |
+
|
119 |
+
# Enhanced Sentiment Analysis with Fixed Chart
|
120 |
+
st.markdown("## π Multi-Source Sentiment Analysis")
|
121 |
+
sentiment_data = result.get("sentiment", {})
|
122 |
|
123 |
+
# Create properly differentiated sentiment chart
|
124 |
categories = list(sentiment_data.keys())
|
125 |
values = []
|
126 |
colors = []
|
127 |
+
sentiment_texts = []
|
128 |
|
129 |
+
for category, sentiment in sentiment_data.items():
|
130 |
+
sentiment_texts.append(sentiment)
|
131 |
if sentiment == "Positive":
|
132 |
values.append(1)
|
133 |
+
colors.append('#00C851') # Green
|
134 |
elif sentiment == "Negative":
|
135 |
values.append(-1)
|
136 |
+
colors.append('#FF4444') # Red
|
137 |
else:
|
138 |
values.append(0)
|
139 |
+
colors.append('#FFBB33') # Orange for neutral
|
140 |
|
141 |
+
# Create sentiment visualization
|
142 |
fig = go.Figure(data=[go.Bar(
|
143 |
x=categories,
|
144 |
y=values,
|
145 |
marker_color=colors,
|
146 |
+
text=sentiment_texts,
|
147 |
+
textposition='auto',
|
148 |
+
hovertemplate='<b>%{x}</b><br>Sentiment: %{text}<br>Score: %{y}<extra></extra>'
|
149 |
)])
|
150 |
|
151 |
fig.update_layout(
|
152 |
+
title="Sentiment Distribution Across Sources",
|
153 |
+
xaxis_title="Analysis Source",
|
154 |
yaxis_title="Sentiment Score",
|
155 |
+
yaxis=dict(
|
156 |
+
tickvals=[-1, 0, 1],
|
157 |
+
ticktext=["Negative", "Neutral", "Positive"],
|
158 |
+
range=[-1.2, 1.2]
|
159 |
+
),
|
160 |
+
height=500,
|
161 |
+
showlegend=False,
|
162 |
+
plot_bgcolor='rgba(0,0,0,0)',
|
163 |
+
paper_bgcolor='rgba(0,0,0,0)'
|
164 |
)
|
165 |
|
166 |
st.plotly_chart(fig, use_container_width=True)
|
167 |
|
168 |
+
# Sentiment Details
|
169 |
+
col1, col2, col3, col4 = st.columns(4)
|
170 |
+
sentiments = ["overall", "social_media", "news", "community"]
|
171 |
+
columns = [col1, col2, col3, col4]
|
172 |
+
|
173 |
+
for sentiment_type, col in zip(sentiments, columns):
|
174 |
+
sentiment_val = sentiment_data.get(sentiment_type, "Neutral")
|
175 |
+
color_class = "positive" if sentiment_val == "Positive" else "negative" if sentiment_val == "Negative" else "neutral"
|
176 |
+
col.markdown(f"**{sentiment_type.replace('_', ' ').title()}**")
|
177 |
+
col.markdown(f'<span class="{color_class}">{sentiment_val}</span>', unsafe_allow_html=True)
|
178 |
+
|
179 |
+
# Investment Recommendation Section
|
180 |
+
st.markdown("## π― Investment Recommendation")
|
181 |
+
recommendation = result.get("recommendation", {})
|
182 |
+
|
183 |
+
action = recommendation.get("action", "HOLD")
|
184 |
+
confidence = recommendation.get("confidence", "Medium")
|
185 |
+
reasoning = recommendation.get("reasoning", "Standard analysis completed")
|
186 |
+
|
187 |
+
# Color-coded recommendation
|
188 |
+
rec_colors = {"BUY": "π’", "SELL": "π΄", "HOLD": "π‘"}
|
189 |
+
rec_bg_colors = {"BUY": "#d4edda", "SELL": "#f8d7da", "HOLD": "#fff3cd"}
|
190 |
+
|
191 |
+
st.markdown(f"""
|
192 |
+
<div style="background-color: {rec_bg_colors.get(action, '#f8f9fa')};
|
193 |
+
padding: 1rem; border-radius: 0.5rem; margin: 1rem 0;">
|
194 |
+
<h3>{rec_colors.get(action, 'π‘')} Investment Recommendation: {action}</h3>
|
195 |
+
<p><strong>Confidence Level:</strong> {confidence}</p>
|
196 |
+
<p><strong>Reasoning:</strong> {reasoning}</p>
|
197 |
+
</div>
|
198 |
+
""", unsafe_allow_html=True)
|
199 |
+
|
200 |
+
# Additional recommendation details
|
201 |
+
col1, col2, col3 = st.columns(3)
|
202 |
+
with col1:
|
203 |
+
time_horizon = recommendation.get("time_horizon", "Medium-term")
|
204 |
+
st.info(f"**Time Horizon:** {time_horizon}")
|
205 |
+
with col2:
|
206 |
+
risk_level = recommendation.get("risk_level", "Moderate")
|
207 |
+
st.info(f"**Risk Level:** {risk_level}")
|
208 |
+
with col3:
|
209 |
+
st.info(f"**Analysis Type:** Multi-Agent AI")
|
210 |
+
|
211 |
+
# Detailed Analysis Summary
|
212 |
+
st.markdown("## π Detailed Analysis Summary")
|
213 |
+
with st.expander("View Full Analysis Report", expanded=False):
|
214 |
+
st.write(result.get("summary", "No detailed summary available"))
|
215 |
+
|
216 |
+
# Risk Assessment
|
217 |
+
st.markdown("## β οΈ Risk Assessment")
|
218 |
+
st.warning(f"**Risk Level:** {result.get('risk_assessment', 'Moderate Risk')}")
|
219 |
|
220 |
except Exception as e:
|
221 |
st.error(f"Analysis failed: {str(e)}")
|
222 |
+
st.info("""
|
223 |
+
π‘ **Troubleshooting Tips:**
|
224 |
+
- Use full cryptocurrency names (e.g., 'bitcoin' not 'btc')
|
225 |
+
- Ensure your API key is properly configured
|
226 |
+
- Try again if the analysis times out
|
227 |
+
- Check network connectivity
|
228 |
+
""")
|
229 |
|
230 |
+
# Enhanced Sidebar
|
231 |
with st.sidebar:
|
232 |
+
st.header("βοΈ System Status")
|
233 |
|
234 |
+
# API Status Check
|
|
|
235 |
api_key_status = "β
Connected" if os.getenv("TOGETHER_API_KEY") else "β Missing API Key"
|
236 |
+
st.write(f"**Together AI:** {api_key_status}")
|
237 |
|
238 |
if not os.getenv("TOGETHER_API_KEY"):
|
239 |
+
st.error("Add TOGETHER_API_KEY to your environment variables")
|
240 |
+
else:
|
241 |
+
st.success("API Configuration Valid")
|
242 |
|
243 |
+
st.markdown("---")
|
244 |
+
st.markdown("### π Analysis Features")
|
245 |
+
st.markdown("""
|
246 |
+
β
**Market Data Analysis**
|
247 |
+
- Real-time price & volume
|
248 |
+
- Market cap & dominance
|
249 |
+
- Price change tracking
|
250 |
+
|
251 |
+
β
**Technical Analysis**
|
252 |
+
- RSI & Moving Averages
|
253 |
+
- Support/Resistance levels
|
254 |
+
- Trend identification
|
255 |
+
|
256 |
+
β
**Sentiment Analysis**
|
257 |
+
- Social media monitoring
|
258 |
+
- News sentiment tracking
|
259 |
+
- Community analysis
|
260 |
+
|
261 |
+
β
**AI Recommendations**
|
262 |
+
- Multi-agent analysis
|
263 |
+
- Risk assessment
|
264 |
+
- Entry/exit strategies
|
265 |
+
""")
|
266 |
+
|
267 |
+
st.markdown("---")
|
268 |
+
st.markdown("### β‘ Performance")
|
269 |
st.markdown("""
|
270 |
+
- **Analysis Time:** 30-60s
|
271 |
+
- **Model:** Llama 3.1 8B Turbo
|
272 |
+
- **Agents:** 3 Specialized AI Agents
|
273 |
+
- **Data Sources:** Multiple APIs
|
274 |
""")
|
275 |
|
276 |
+
# Footer
|
277 |
st.markdown("---")
|
278 |
+
st.markdown("### π Advanced Analytics Dashboard")
|
279 |
+
cols = st.columns(4)
|
280 |
with cols[0]:
|
281 |
+
st.metric("AI Agents", "3", "π€ Specialized")
|
282 |
with cols[1]:
|
283 |
+
st.metric("Data Sources", "Multiple", "π Real-time")
|
284 |
with cols[2]:
|
285 |
+
st.metric("Analysis Depth", "Professional", "β Institutional Grade")
|
286 |
+
with cols[3]:
|
287 |
+
st.metric("Update Frequency", "Real-time", "π Live Data")
|