from preprocess import load_datasets, DatasetArguments
from predict import ClassifierArguments, SEGMENT_MATCH_RE, CATEGORIES
from shared import CustomTokens, device, GeneralArguments, OutputArguments
from model import ModelArguments
import transformers
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import pickle
from transformers import (
    DataCollatorForSeq2Seq,
    HfArgumentParser,
    Seq2SeqTrainer,
    Seq2SeqTrainingArguments,
    AutoTokenizer,
    AutoModelForSeq2SeqLM
)

from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
from sklearn.linear_model import LogisticRegression
from sklearn.feature_extraction.text import TfidfVectorizer
from utils import re_findall

# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.13.0.dev0')
require_version('datasets>=1.8.0',
                'To fix: pip install -r requirements.txt')

os.environ['WANDB_DISABLED'] = 'true'


logger = logging.getLogger(__name__)

# Setup logging
logging.basicConfig(
    format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
    datefmt='%m/%d/%Y %H:%M:%S',
    handlers=[logging.StreamHandler(sys.stdout)],
)


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={'help': 'The number of processes to use for the preprocessing.'},
    )
    # https://github.com/huggingface/transformers/issues/5204
    max_source_length: Optional[int] = field(
        default=512,
        metadata={
            'help': 'The maximum total input sequence length after tokenization. Sequences longer '
            'than this will be truncated, sequences shorter will be padded.'
        },
    )
    max_target_length: Optional[int] = field(
        default=512,
        metadata={
            'help': 'The maximum total sequence length for target text after tokenization. Sequences longer '
            'than this will be truncated, sequences shorter will be padded.'
        },
    )
    val_max_target_length: Optional[int] = field(
        default=None,
        metadata={
            'help': 'The maximum total sequence length for validation target text after tokenization. Sequences longer '
            'than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`.'
            'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used '
            'during ``evaluate`` and ``predict``.'
        },
    )
    pad_to_max_length: bool = field(
        default=False,
        metadata={
            'help': 'Whether to pad all samples to model maximum sentence length. '
            'If False, will pad the samples dynamically when batching to the maximum length in the batch. More '
            'efficient on GPU but very bad for TPU.'
        },
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            'help': 'For debugging purposes or quicker training, truncate the number of training examples to this value if set.'
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
            'help': 'For debugging purposes or quicker training, truncate the number of evaluation examples to this value if set.'
        },
    )
    max_predict_samples: Optional[int] = field(
        default=None,
        metadata={
            'help': 'For debugging purposes or quicker training, truncate the number of prediction examples to this value if set.'
        },
    )
    num_beams: Optional[int] = field(
        default=None,
        metadata={
            'help': 'Number of beams to use for evaluation. This argument will be passed to ``model.generate``, '
            'which is used during ``evaluate`` and ``predict``.'
        },
    )
    ignore_pad_token_for_loss: bool = field(
        default=True,
        metadata={
            'help': 'Whether to ignore the tokens corresponding to padded labels in the loss computation or not.'
        },
    )
    source_prefix: Optional[str] = field(
        default=CustomTokens.EXTRACT_SEGMENTS_PREFIX.value, metadata={
            'help': 'A prefix to add before every source text (useful for T5 models).'}
    )

    # TODO add vectorizer params

    def __post_init__(self):
        if self.val_max_target_length is None:
            self.val_max_target_length = self.max_target_length


@dataclass
class SequenceTrainingArguments(OutputArguments, Seq2SeqTrainingArguments):
    seed: Optional[int] = GeneralArguments.__dataclass_fields__['seed']

    num_train_epochs: float = field(
        default=1, metadata={'help': 'Total number of training epochs to perform.'})

    save_steps: int = field(default=5000, metadata={
                            'help': 'Save checkpoint every X updates steps.'})
    eval_steps: int = field(default=5000, metadata={
                            'help': 'Run an evaluation every X steps.'})
    logging_steps: int = field(default=5000, metadata={
                               'help': 'Log every X updates steps.'})

    skip_train_transformer: bool = field(default=False, metadata={
        'help': 'Whether to skip training the transformer.'})
    train_classifier: bool = field(default=False, metadata={
        'help': 'Whether to run training on the 2nd phase (classifier).'})

    # do_eval: bool = field(default=False, metadata={
    #                       'help': 'Whether to run eval on the dev set.'})
    do_predict: bool = field(default=False, metadata={
                             'help': 'Whether to run predictions on the test set.'})

    per_device_train_batch_size: int = field(
        default=4, metadata={'help': 'Batch size per GPU/TPU core/CPU for training.'}
    )
    per_device_eval_batch_size: int = field(
        default=4, metadata={'help': 'Batch size per GPU/TPU core/CPU for evaluation.'}
    )

    # report_to: Optional[List[str]] = field(
    #     default=None, metadata={"help": "The list of integrations to report the results and logs to."}
    # )
    evaluation_strategy: str = field(
        default='steps',
        metadata={
            'help': 'The evaluation strategy to use.',
            'choices': ['no', 'steps', 'epoch']
        },
    )

    # evaluation_strategy (:obj:`str` or :class:`~transformers.trainer_utils.IntervalStrategy`, `optional`, defaults to :obj:`"no"`):
    # The evaluation strategy to adopt during training. Possible values are:

    #     * :obj:`"no"`: No evaluation is done during training.
    #     * :obj:`"steps"`: Evaluation is done (and logged) every :obj:`eval_steps`.
    #     * :obj:`"epoch"`: Evaluation is done at the end of each epoch.


def main():
    # reset()

    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    hf_parser = HfArgumentParser((
        ModelArguments,
        DatasetArguments,
        DataTrainingArguments,
        SequenceTrainingArguments,
        ClassifierArguments
    ))
    model_args, dataset_args, data_training_args, training_args, classifier_args = hf_parser.parse_args_into_dataclasses()

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Set seed before initializing model.
    # set_seed(training_args.seed)

    # Log on each process the small summary:
    logger.warning(
        f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'
        + f'distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}'
    )
    logger.info(f'Training/evaluation parameters {training_args}')

    # FP16 https://github.com/huggingface/transformers/issues/9295

    # Works:
    # https://huggingface.co/docs/transformers/model_doc/t5v1.1
    # google/t5-v1_1-small
    # google/t5-v1_1-base
    # google/t5-v1_1-large
    # google/t5-v1_1-xl
    # google/t5-v1_1-xxl

    # https://huggingface.co/docs/transformers/model_doc/t5
    # t5-small
    # t5-base
    # t5-large
    # t5-3b
    # t5-11b

    # allenai/led-base-16384 - https://github.com/huggingface/transformers/issues/9810

    # Further work:
    # Multilingual- https://huggingface.co/docs/transformers/model_doc/mt5

    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    if training_args.skip_train_transformer and not training_args.train_classifier:
        print('Nothing to do. Exiting')
        return

    raw_datasets = load_datasets(dataset_args)
    # , cache_dir=model_args.cache_dir

    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    if training_args.train_classifier:
        print('Train classifier')
        # 1. Vectorize raw data to pass into classifier
        # CountVectorizer TfidfVectorizer
        # TfidfVectorizer - better (comb of CountVectorizer)
        vectorizer = TfidfVectorizer(  # CountVectorizer
            # lowercase=False,
            # stop_words='english',  # TODO optimise stop words?
            # stop_words=stop_words,

            ngram_range=(1, 2),  # best so far
            # max_features=8000  # remove for higher accuracy?
            max_features=20000
            # max_features=10000
            # max_features=1000
        )

        train_test_data = {
            'train': {
                'X': [],
                'y': []
            },
            'test': {
                'X': [],
                'y': []
            }
        }

        print('Splitting')
        for ds_type in train_test_data:
            dataset = raw_datasets[ds_type]

            for row in dataset:
                matches = re_findall(SEGMENT_MATCH_RE, row['extracted'])
                if matches:
                    for match in matches:
                        train_test_data[ds_type]['X'].append(match['text'])

                        class_index = CATEGORIES.index(match['category'])
                        train_test_data[ds_type]['y'].append(class_index)

                else:
                    train_test_data[ds_type]['X'].append(row['text'])
                    train_test_data[ds_type]['y'].append(0)

        print('Fitting')
        _X_train = vectorizer.fit_transform(train_test_data['train']['X'])
        _X_test = vectorizer.transform(train_test_data['test']['X'])

        y_train = train_test_data['train']['y']
        y_test = train_test_data['test']['y']

        # 2. Create classifier
        classifier = LogisticRegression(max_iter=2000, class_weight='balanced')

        # 3. Fit data
        print('Fit classifier')
        classifier.fit(_X_train, y_train)

        # 4. Measure accuracy
        accuracy = classifier.score(_X_test, y_test)

        print(f'[LogisticRegression] Accuracy percent:',
              round(accuracy*100, 3))

        # 5. Save classifier and vectorizer
        with open(os.path.join(classifier_args.classifier_dir, classifier_args.classifier_file), 'wb') as fp:
            pickle.dump(classifier, fp)

        with open(os.path.join(classifier_args.classifier_dir, classifier_args.vectorizer_file), 'wb') as fp:
            pickle.dump(vectorizer, fp)

    if not training_args.skip_train_transformer:

        if data_training_args.source_prefix is None and 't5-' in model_args.model_name_or_path:
            logger.warning(
                "You're running a t5 model but didn't provide a source prefix, which is the expected, e.g. with `--source_prefix 'summarize: ' `"
            )

        # Detecting last checkpoint.
        last_checkpoint = None
        if os.path.isdir(training_args.output_dir) and not training_args.overwrite_output_dir:
            last_checkpoint = get_last_checkpoint(training_args.output_dir)
            if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
                raise ValueError(
                    f'Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome.'
                )
            elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
                logger.info(
                    f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change the `--output_dir` or add `--overwrite_output_dir` to train from scratch.'
                )

        # Load pretrained model and tokenizer
        model = AutoModelForSeq2SeqLM.from_pretrained(
            model_args.model_name_or_path)
        model.to(device())

        tokenizer = AutoTokenizer.from_pretrained(
            model_args.model_name_or_path)

        # Ensure model and tokenizer contain the custom tokens
        CustomTokens.add_custom_tokens(tokenizer)
        model.resize_token_embeddings(len(tokenizer))

        if model.config.decoder_start_token_id is None:
            raise ValueError(
                'Make sure that `config.decoder_start_token_id` is correctly defined')

        if hasattr(model.config, 'max_position_embeddings') and model.config.max_position_embeddings < data_training_args.max_source_length:
            if model_args.resize_position_embeddings is None:
                logger.warning(
                    f"Increasing the model's number of position embedding vectors from {model.config.max_position_embeddings} to {data_training_args.max_source_length}."
                )
                model.resize_position_embeddings(
                    data_training_args.max_source_length)

            elif model_args.resize_position_embeddings:
                model.resize_position_embeddings(
                    data_training_args.max_source_length)

            else:
                raise ValueError(
                    f'`--max_source_length` is set to {data_training_args.max_source_length}, but the model only has {model.config.max_position_embeddings}'
                    f' position encodings. Consider either reducing `--max_source_length` to {model.config.max_position_embeddings} or to automatically '
                    "resize the model's position encodings by passing `--resize_position_embeddings`."
                )

        # Preprocessing the datasets.
        # We need to tokenize inputs and targets.
        column_names = raw_datasets['train'].column_names

        # Temporarily set max_target_length for training.
        max_target_length = data_training_args.max_target_length
        padding = 'max_length' if data_training_args.pad_to_max_length else False

        if training_args.label_smoothing_factor > 0 and not hasattr(model, 'prepare_decoder_input_ids_from_labels'):
            logger.warning(
                'label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for'
                f'`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory'
            )

        prefix = data_training_args.source_prefix if data_training_args.source_prefix is not None else ''

        # https://github.com/huggingface/transformers/issues/5204
        def preprocess_function(examples):
            inputs = examples['text']
            targets = examples['extracted']
            inputs = [prefix + inp for inp in inputs]
            model_inputs = tokenizer(
                inputs, max_length=data_training_args.max_source_length, padding=padding, truncation=True)

            # Setup the tokenizer for targets
            with tokenizer.as_target_tokenizer():
                labels = tokenizer(
                    targets, max_length=max_target_length, padding=padding, truncation=True)

            # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
            # padding in the loss.
            if padding == 'max_length' and data_training_args.ignore_pad_token_for_loss:
                labels['input_ids'] = [
                    [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels['input_ids']
                ]
            model_inputs['labels'] = labels['input_ids']

            return model_inputs

        def prepare_dataset(dataset, desc):
            return dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_training_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not dataset_args.overwrite_cache,
                desc=desc,  # tokenizing train dataset
            )
        # train_dataset # TODO shuffle?

        # if training_args.do_train:
        if 'train' not in raw_datasets:  # TODO do checks above?
            raise ValueError('Train dataset missing')
        train_dataset = raw_datasets['train']
        if data_training_args.max_train_samples is not None:
            train_dataset = train_dataset.select(
                range(data_training_args.max_train_samples))
        with training_args.main_process_first(desc='train dataset map pre-processing'):
            train_dataset = prepare_dataset(
                train_dataset, desc='Running tokenizer on train dataset')

        max_target_length = data_training_args.val_max_target_length
        if 'validation' not in raw_datasets:
            raise ValueError('Validation dataset missing')
        eval_dataset = raw_datasets['validation']
        if data_training_args.max_eval_samples is not None:
            eval_dataset = eval_dataset.select(
                range(data_training_args.max_eval_samples))
        with training_args.main_process_first(desc='validation dataset map pre-processing'):
            eval_dataset = prepare_dataset(
                eval_dataset, desc='Running tokenizer on validation dataset')

        if 'test' not in raw_datasets:
            raise ValueError('Test dataset missing')
        predict_dataset = raw_datasets['test']
        if data_training_args.max_predict_samples is not None:
            predict_dataset = predict_dataset.select(
                range(data_training_args.max_predict_samples))
        with training_args.main_process_first(desc='prediction dataset map pre-processing'):
            predict_dataset = prepare_dataset(
                predict_dataset, desc='Running tokenizer on prediction dataset')

        # Data collator
        label_pad_token_id = - \
            100 if data_training_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
        data_collator = DataCollatorForSeq2Seq(
            tokenizer,
            model=model,
            label_pad_token_id=label_pad_token_id,
            pad_to_multiple_of=8 if training_args.fp16 else None,
        )

        # Done processing datasets

        # Initialize our Trainer
        trainer = Seq2SeqTrainer(
            model=model,
            args=training_args,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            tokenizer=tokenizer,
            data_collator=data_collator,
        )

        # Training
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint

        try:
            train_result = trainer.train(resume_from_checkpoint=checkpoint)
            trainer.save_model()  # Saves the tokenizer too for easy upload
        except KeyboardInterrupt:
            # TODO add option to save model on interrupt?
            # print('Saving model')
            # trainer.save_model(os.path.join(
            #     training_args.output_dir, 'checkpoint-latest'))  # TODO use dir
            raise

        metrics = train_result.metrics
        max_train_samples = data_training_args.max_train_samples or len(
            train_dataset)
        metrics['train_samples'] = min(max_train_samples, len(train_dataset))

        trainer.log_metrics('train', metrics)
        trainer.save_metrics('train', metrics)
        trainer.save_state()

        kwargs = {'finetuned_from': model_args.model_name_or_path,
                  'tasks': 'summarization'}

        if training_args.push_to_hub:
            trainer.push_to_hub(**kwargs)
        else:
            trainer.create_model_card(**kwargs)


if __name__ == '__main__':
    main()