mazed commited on
Commit
c7aa474
·
verified ·
1 Parent(s): b21c496

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -0
app.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ import tensorflow as tf
4
+ from tensorflow.keras.layers import TextVectorization
5
+
6
+ df = pd.read_csv('train.csv')
7
+
8
+ X=df['comment_text']
9
+
10
+ vectorizer = TextVectorization(max_tokens=250000,
11
+ output_sequence_length=300,
12
+ output_mode='int')
13
+ vectorizer.adapt(X)
14
+
15
+ #load the model
16
+ model = tf.keras.models.load_model('CT_epoch_3.h5')
17
+
18
+
19
+ def score_comment(comment):
20
+ # Vectorize the input comment
21
+ vectorized_comment = vectorizer([comment])
22
+ # Predict using the loaded model
23
+ results = model.predict(vectorized_comment)
24
+
25
+ # Generate the output text based on predictions
26
+ text = ''
27
+ for idx, col in enumerate(df.columns[2:]): # Adjust the range if necessary
28
+ text += '{}: {}\n'.format(col, results[0][idx] > 0.5)
29
+
30
+ return text
31
+
32
+ interface = gr.Interface(
33
+ fn=score_comment,
34
+ inputs=gr.Textbox(lines=2, placeholder='Comment to score'),
35
+ outputs='text'
36
+ )
37
+
38
+ interface.launch()