Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,20 @@
|
|
1 |
-
from
|
2 |
import gradio as gr
|
|
|
|
|
|
|
3 |
|
4 |
-
#
|
5 |
-
|
6 |
|
7 |
-
|
8 |
-
labels =
|
9 |
|
10 |
# Definimos una función que se encarga de llevar a cabo las predicciones
|
11 |
def predict(img):
|
12 |
-
img = PILImage.create(img)
|
13 |
-
pred,pred_idx,probs =
|
14 |
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
15 |
|
16 |
# Creamos la interfaz y la lanzamos.
|
17 |
-
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.Label(num_top_classes=
|
|
|
1 |
+
from huggingface_hub import from_pretrained_fastai
|
2 |
import gradio as gr
|
3 |
+
from fastai.vision.all import *
|
4 |
+
|
5 |
+
|
6 |
|
7 |
+
# repo_id = "YOUR_USERNAME/YOUR_LEARNER_NAME"
|
8 |
+
repo_id = "maviced/intel-image-classification"
|
9 |
|
10 |
+
learner = from_pretrained_fastai(repo_id)
|
11 |
+
labels = learner.dls.vocab
|
12 |
|
13 |
# Definimos una función que se encarga de llevar a cabo las predicciones
|
14 |
def predict(img):
|
15 |
+
# img = PILImage.create(img)
|
16 |
+
pred,pred_idx,probs = learner.predict(img)
|
17 |
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
18 |
|
19 |
# Creamos la interfaz y la lanzamos.
|
20 |
+
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.Label(num_top_classes=3),examples=['10000.jpg','10007.jpg']).launch(share=False)
|