# -*- coding: utf-8 -*- """ Created on Thu Jun 8 03:39:02 2023 @author: mritchey """ import pandas as pd import numpy as np import streamlit as st from geopy.extra.rate_limiter import RateLimiter from geopy.geocoders import Nominatim import folium from streamlit_folium import st_folium from vincenty import vincenty st.set_page_config(layout="wide") @st.cache_data def convert_df(df): return df.to_csv(index=0).encode('utf-8') @st.cache_data def get_data(file='hail2010-20230920_significant_bulk_all.parquet'): return pd.read_parquet(file) def map_perimeters(address,lat ,lon): m = folium.Map(location=[lat, lon], zoom_start=6, height=400) folium.Marker( location=[lat, lon], tooltip=f'Address: {address}', ).add_to(m) return m def distance(x): left_coords = (x[0], x[1]) right_coords = (x[2], x[3]) return vincenty(left_coords, right_coords, miles=True) def geocode(address): try: address2 = address.replace(' ', '+').replace(',', '%2C') df = pd.read_json( f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json') results = df.iloc[:1, 0][0][0]['coordinates'] lat, lon = results['y'], results['x'] except: geolocator = Nominatim(user_agent="GTA Lookup") geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1) location = geolocator.geocode(address) lat, lon = location.latitude, location.longitude return lat, lon #Side Bar address = st.sidebar.text_input( "Address", "Dallas, TX") date = st.sidebar.date_input("Loss Date", pd.Timestamp(2021, 7, 14), key='date') df_hail=get_data() #Geocode Addreses lat, lon = geocode(address) #Filter DAta df_hail_cut=df_hail.query(f"{lat}-1<=LAT<={lat}+1 and {lon}-1<=LON<={lon}+1 ") df_hail_cut=df_hail_cut.query("Date_est<=@date") df_hail_cut["Lat_address"] = lat df_hail_cut["Lon_address"] = lon df_hail_cut['Miles to Hail'] = [ distance(i) for i in df_hail_cut[['LAT','LON','Lat_address','Lon_address']].values] df_hail_cut['MAXSIZE'] = df_hail_cut['MAXSIZE'].round(2) df_hail_cut=df_hail_cut.query("`Miles to Hail`<10") df_hail_cut['Category']=np.where(df_hail_cut['Miles to Hail']<.1,"At Location", np.where(df_hail_cut['Miles to Hail']<1,"Within 1 Mile", np.where(df_hail_cut['Miles to Hail']<3,"Within 3 Miles", np.where(df_hail_cut['Miles to Hail']<10,"Within 10 Miles",'Other')))) df_hail_cut_group=pd.pivot_table(df_hail_cut,index='Date_est', columns='Category', values='MAXSIZE', aggfunc='max') cols=df_hail_cut_group.columns cols_focus=['At Location',"Within 1 Mile","Within 3 Miles","Within 10 Miles"] missing_cols=set(cols_focus)-set(cols) for c in missing_cols: df_hail_cut_group[c]=np.nan df_hail_cut_group2=df_hail_cut_group[cols_focus] for i in range(3): df_hail_cut_group2[cols_focus[i+1]]=np.where(df_hail_cut_group2[cols_focus[i+1]]< df_hail_cut_group2[cols_focus[i]], df_hail_cut_group2[cols_focus[i]], df_hail_cut_group2[cols_focus[i+1]]) df_hail_cut_group2=df_hail_cut_group2.sort_index(ascending=False) #Map Data m = map_perimeters(address,lat, lon) #Display col1, col2 = st.columns((3, 2)) with col1: st.header('Estimated Maximum Hail Size') st.write('Data from 2010 to 2023-09-20') df_hail_cut_group2 csv2 = convert_df(df_hail_cut_group2.reset_index()) st.download_button( label="Download data as CSV", data=csv2, file_name=f'{address}_{date}.csv', mime='text/csv') with col2: st.header('Map') st_folium(m, height=400)