Spaces:
Sleeping
Sleeping
mattritchey
commited on
Commit
•
21fafcc
1
Parent(s):
807eb34
Upload 3 files
Browse files- app.py +132 -0
- hail2010-20230920_significant_bulk_all.parquet +3 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Created on Thu Jun 8 03:39:02 2023
|
4 |
+
|
5 |
+
@author: mritchey
|
6 |
+
"""
|
7 |
+
|
8 |
+
import pandas as pd
|
9 |
+
import numpy as np
|
10 |
+
import streamlit as st
|
11 |
+
from geopy.extra.rate_limiter import RateLimiter
|
12 |
+
from geopy.geocoders import Nominatim
|
13 |
+
import folium
|
14 |
+
from streamlit_folium import st_folium
|
15 |
+
from vincenty import vincenty
|
16 |
+
|
17 |
+
st.set_page_config(layout="wide")
|
18 |
+
|
19 |
+
@st.cache_data
|
20 |
+
def convert_df(df):
|
21 |
+
return df.to_csv(index=0).encode('utf-8')
|
22 |
+
|
23 |
+
@st.cache_data
|
24 |
+
def get_data(file='hail2010-20230920_significant_bulk_all.parquet'):
|
25 |
+
return pd.read_parquet(file)
|
26 |
+
|
27 |
+
|
28 |
+
def map_perimeters(address,lat ,lon):
|
29 |
+
|
30 |
+
m = folium.Map(location=[lat, lon],
|
31 |
+
|
32 |
+
zoom_start=6,
|
33 |
+
height=400)
|
34 |
+
folium.Marker(
|
35 |
+
location=[lat, lon],
|
36 |
+
tooltip=f'Address: {address}',
|
37 |
+
).add_to(m)
|
38 |
+
|
39 |
+
return m
|
40 |
+
|
41 |
+
def distance(x):
|
42 |
+
left_coords = (x[0], x[1])
|
43 |
+
right_coords = (x[2], x[3])
|
44 |
+
return vincenty(left_coords, right_coords, miles=True)
|
45 |
+
|
46 |
+
def geocode(address):
|
47 |
+
try:
|
48 |
+
address2 = address.replace(' ', '+').replace(',', '%2C')
|
49 |
+
df = pd.read_json(
|
50 |
+
f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
|
51 |
+
results = df.iloc[:1, 0][0][0]['coordinates']
|
52 |
+
lat, lon = results['y'], results['x']
|
53 |
+
except:
|
54 |
+
geolocator = Nominatim(user_agent="GTA Lookup")
|
55 |
+
geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)
|
56 |
+
location = geolocator.geocode(address)
|
57 |
+
lat, lon = location.latitude, location.longitude
|
58 |
+
return lat, lon
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
#Side Bar
|
65 |
+
address = st.sidebar.text_input(
|
66 |
+
"Address", "Dallas, TX")
|
67 |
+
date = st.sidebar.date_input("Loss Date", pd.Timestamp(2021, 7, 14), key='date')
|
68 |
+
df_hail=get_data()
|
69 |
+
|
70 |
+
|
71 |
+
#Geocode Addreses
|
72 |
+
lat, lon = geocode(address)
|
73 |
+
|
74 |
+
#Filter DAta
|
75 |
+
df_hail_cut=df_hail.query(f"{lat}-1<=LAT<={lat}+1 and {lon}-1<=LON<={lon}+1 ")
|
76 |
+
df_hail_cut=df_hail_cut.query("Date_est<=@date")
|
77 |
+
|
78 |
+
|
79 |
+
df_hail_cut["Lat_address"] = lat
|
80 |
+
df_hail_cut["Lon_address"] = lon
|
81 |
+
df_hail_cut['Miles to Hail'] = [
|
82 |
+
distance(i) for i in df_hail_cut[['LAT','LON','Lat_address','Lon_address']].values]
|
83 |
+
df_hail_cut['MAXSIZE'] = df_hail_cut['MAXSIZE'].round(2)
|
84 |
+
|
85 |
+
df_hail_cut=df_hail_cut.query("`Miles to Hail`<10")
|
86 |
+
df_hail_cut['Category']=np.where(df_hail_cut['Miles to Hail']<.1,"At Location",
|
87 |
+
np.where(df_hail_cut['Miles to Hail']<1,"Within 1 Mile",
|
88 |
+
np.where(df_hail_cut['Miles to Hail']<3,"Within 3 Miles",
|
89 |
+
np.where(df_hail_cut['Miles to Hail']<10,"Within 10 Miles",'Other'))))
|
90 |
+
|
91 |
+
df_hail_cut_group=pd.pivot_table(df_hail_cut,index='Date_est',
|
92 |
+
columns='Category',
|
93 |
+
values='MAXSIZE',
|
94 |
+
aggfunc='max')
|
95 |
+
|
96 |
+
cols=df_hail_cut_group.columns
|
97 |
+
cols_focus=['At Location',"Within 1 Mile","Within 3 Miles","Within 10 Miles"]
|
98 |
+
|
99 |
+
missing_cols=set(cols_focus)-set(cols)
|
100 |
+
for c in missing_cols:
|
101 |
+
df_hail_cut_group[c]=np.nan
|
102 |
+
|
103 |
+
df_hail_cut_group2=df_hail_cut_group[cols_focus]
|
104 |
+
|
105 |
+
for i in range(3):
|
106 |
+
df_hail_cut_group2[cols_focus[i+1]]=np.where(df_hail_cut_group2[cols_focus[i+1]]<
|
107 |
+
df_hail_cut_group2[cols_focus[i]],
|
108 |
+
df_hail_cut_group2[cols_focus[i]],
|
109 |
+
df_hail_cut_group2[cols_focus[i+1]])
|
110 |
+
|
111 |
+
|
112 |
+
df_hail_cut_group2=df_hail_cut_group2.sort_index(ascending=False)
|
113 |
+
|
114 |
+
#Map Data
|
115 |
+
m = map_perimeters(address,lat, lon)
|
116 |
+
|
117 |
+
#Display
|
118 |
+
col1, col2 = st.columns((3, 2))
|
119 |
+
with col1:
|
120 |
+
st.header('Estimated Maximum Hail Size')
|
121 |
+
st.write('Data from 2010 to 2023-09-20')
|
122 |
+
df_hail_cut_group2
|
123 |
+
csv2 = convert_df(df_hail_cut_group2.reset_index())
|
124 |
+
st.download_button(
|
125 |
+
label="Download data as CSV",
|
126 |
+
data=csv2,
|
127 |
+
file_name=f'{address}_{date}.csv',
|
128 |
+
mime='text/csv')
|
129 |
+
with col2:
|
130 |
+
|
131 |
+
st.header('Map')
|
132 |
+
st_folium(m, height=400)
|
hail2010-20230920_significant_bulk_all.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:86c86463c9f9180d9fff30973d31228b2f96bec03f460da9caaa7645fe00831b
|
3 |
+
size 75828421
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
folium==0.12.1.post1
|
2 |
+
geopy==2.2.0
|
3 |
+
numpy==1.19.5
|
4 |
+
pandas==1.5.2
|
5 |
+
streamlit==1.20.0
|
6 |
+
streamlit_folium==0.6.15
|
7 |
+
vincenty==0.1.4
|