import plotly.graph_objects as go from folium.raster_layers import ImageOverlay import re import glob import pickle import h5py import rasterio import streamlit as st import os import branca.colormap as cm import folium import numpy as np import pandas as pd from geopy.extra.rate_limiter import RateLimiter from geopy.geocoders import Nominatim from streamlit_plotly_events import plotly_events import warnings from folium import plugins warnings.filterwarnings("ignore") @st.cache_data def convert_df(df): return df.to_csv(index=0).encode('utf-8') @st.cache_data def geocode(address): try: address2 = address.replace(' ', '+').replace(',', '%2C') df = pd.read_json( f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json') results = df.iloc[:1, 0][0][0]['coordinates'] lat, lon = results['y'], results['x'] except: geolocator = Nominatim(user_agent="GTA Lookup") geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1) location = geolocator.geocode(address) lat, lon = location.latitude, location.longitude return pd.DataFrame({'Lat': lat, 'Lon': lon}, index=[0]) @st.cache_data def get_data(row, col, radius): files = [ "data/GUST_hrrr_2021_all_max.h5", "data/GUST_hrrr_2022_all_max.h5", "data/GUST_hrrr_2023_all_max.h5", "data/GUST_hrrr_202401_202409_max.h5", ] all_data = [] all_dates = [] for f in files: with h5py.File(f, 'r') as f: data = f['GUST'][:, row-radius:row + radius+1, col-radius:col+radius+1] dates = f['dates'][:] all_data.append(data) all_dates.append(dates) data_mat = np.concatenate(all_data) data_mat = np.where(data_mat < 0, 0, data_mat)*2.23694 dates_mat = np.concatenate(all_dates) data_actual = np.array([i[radius, radius] for i in data_mat]) data_max = np.max(data_mat, axis=(1, 2)) data_max_2 = np.max(data_mat, axis=0) data_max_2 = data_max_2 df = pd.DataFrame({'Date': dates_mat, 'Actual': data_actual, 'Max': data_max}) df['Date'] = pd.to_datetime(df['Date'], format='%Y%m%d') # df['Date']=df['Date']+pd.Timedelta(days=1) return df, data_max_2 # def lat_lon_to_row_col(lat, lon): # crs_dic = pickle.load(open('data/hrrr_crs.pkl', 'rb')) # transform = crs_dic['affine'] # trans_rtma = crs_dic['proj_4326'] # lon_rtma, lat_rtma = trans_rtma.transform(lon, lat) # row, col = rasterio.transform.rowcol(transform, lon_rtma, lat_rtma) # row, col = int(row), int(col) # return row, col def lat_lon_to_row_col(lat, lon): crs_dic = pickle.load(open('data/hrrr_crs.pkl', 'rb')) lon_hrrr, lat_hrrr = crs_dic['proj_4326'].transform(lon, lat) row, col = rasterio.transform.rowcol(crs_dic['affine'], lon_hrrr, lat_hrrr) return int(row), int(col) def map_folium(lat, lon, files_dates_selected, actual_point, max_point): popup_content = f"""
{address}
Gust: {actual_point:,.2f} MPH
Max: {max_point:,.2f} MPH
""" # Create a base map m = folium.Map(location=[lat, lon], zoom_start=6) folium.Marker(location=[lat, lon], popup=folium.Popup(popup_content, max_width=400) ).add_to(m) # Define the image bounds (SW and NE corners) image_bounds = [[21.081227294744885, -134.02385805744265], [52.62502506520796, -60.98015065638055]] # Add ImageOverlays for each image overlay = ImageOverlay(image=files_dates_selected, bounds=image_bounds, opacity=.75, mercator_project=False) overlay.add_to(m) colormap_hail = cm.LinearColormap( colors=['blue', 'lightblue', 'pink', 'red'], vmin=0, vmax=75) # Add the color legend to the map colormap_hail.caption = 'Legend: Wind Gust (MPH)' colormap_hail.add_to(m) plugins.Fullscreen().add_to(m) return m def get_all_data(lat, lon, radius, start_date, end_date): #Geocode and get Data row, col = lat_lon_to_row_col(lat, lon) df_data, max_values = get_data(row, col, radius) df_data = df_data.query(f"'{start_date}'<=Date<='{end_date}'") df_data['Actual'] = df_data['Actual'].astype(float).round(2) df_data['Max'] = df_data['Max'].astype(float).round(2) fig = go.Figure() # Add bars for actual values fig.add_trace(go.Bar( x=df_data['Date'], y=df_data['Actual'], name='Actual Value', marker_color='#2D5986', hoverinfo='text', # Show text information only text=df_data.apply( lambda row: f'Date: {row["Date"].date()}
Gust: {row["Actual"]}
Max: {row["Max"]}', axis=1) )) # Update layout fig.update_layout( title='', xaxis_title='Date', yaxis_title='Gust (MPH)', barmode='group' ) return fig, df_data #Set up 2 Columns st.set_page_config(layout="wide") col1, col2 = st.columns((2)) #Input Values address = st.sidebar.text_input("Address", "123 Main Street, Dallas, TX 75126") date_focus = st.sidebar.date_input("Date", pd.Timestamp(2021, 7, 1)) within_days = st.sidebar.selectbox('Days Within', (90, 180, 365)) circle_radius = st.sidebar.selectbox('Box Radius (Miles)', (5, 10, 25)) interactive_map = st.sidebar.radio( 'Interactive Map (Lower Res)', (False, True)) start_date = date_focus+pd.Timedelta(days=-within_days) end_date = date_focus+pd.Timedelta(days=within_days) date_range = pd.date_range(start=start_date, end=end_date).strftime('%Y%m%d') result = geocode(address) lat, lon = result.values[0] radius = int(np.ceil(circle_radius*1.6/2.5)) fig, df_data = get_all_data(lat, lon, radius, start_date, end_date) _, actual_point, max_point = df_data.query(f"Date=='{date_focus}'").values[0] files = glob.glob(r'data/**/*.webp', recursive=True) with col1: st.title('Gust') try: selected_points = plotly_events(fig) csv = convert_df(df_data) st.download_button( label="Download data as CSV", data=csv, file_name='data.csv', mime='text/csv') except: pass with col2: st.title('GUST MAP') if selected_points: # Extract the details of the first selected point selected_index = selected_points[0]['pointIndex'] selected_data = df_data.iloc[selected_index] _, actual_point, max_point = df_data.query( f"Date=='{selected_data['Date']}'").values[0] files_dates_selected = [i for i in files if selected_data['Date'].strftime( '%Y%m%d') in re.search(r'(\d{8})', i).group()][0] m = map_folium(lat, lon, files_dates_selected, actual_point, max_point) m.save("map_new.html") st.write('Date: ' + selected_data['Date'].strftime('%m-%d-%Y')) st.components.v1.html( open("map_new.html", 'r').read(), height=500, width=500) else: files_dates_selected = [i for i in files if date_focus.strftime( '%Y%m%d') in re.search(r'(\d{8})', i).group()][0] st.write('Date: ' + date_focus.strftime('%m-%d-%Y')) m = map_folium(lat, lon, files_dates_selected, actual_point, max_point) m.save("map_new.html") st.components.v1.html( open("map_new.html", 'r').read(), height=500, width=500) st.markdown(""" """, unsafe_allow_html=True)