from branca.element import Template, MacroElement from folium.raster_layers import ImageOverlay import re import glob import altair as alt import pickle import h5py import rasterio import streamlit as st import os import branca.colormap as cm import folium import numpy as np import pandas as pd from geopy.extra.rate_limiter import RateLimiter from geopy.geocoders import Nominatim import warnings warnings.filterwarnings("ignore") @st.cache_data def convert_df(df): return df.to_csv(index=0).encode('utf-8') def geocode(address): try: address2 = address.replace(' ', '+').replace(',', '%2C') df = pd.read_json( f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json') results = df.iloc[:1, 0][0][0]['coordinates'] lat, lon = results['y'], results['x'] except: geolocator = Nominatim(user_agent="GTA Lookup") geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1) location = geolocator.geocode(address) lat, lon = location.latitude, location.longitude return pd.DataFrame({'Lat': lat, 'Lon': lon}, index=[0]) def get_data(row, col, radius=8): files = [ "data/2023_hail.h5", "data/2022_hail.h5", "data/2021_hail.h5", "data/2020_hail.h5" ] all_data = [] all_dates = [] for f in files: with h5py.File(f, 'r') as f: data = f['hail'][:, row - radius: row + radius+ 1, col-radius: col+radius+1] dates = f['dates'][:] all_data.append(data) all_dates.append(dates) data_mat = np.concatenate(all_data) data_mat = np.where(data_mat < 0, 0, data_mat)*0.0393701 dates_mat = np.concatenate(all_dates) data_actual = [i[radius, radius] for i in data_mat] data_max = np.max(data_mat, axis=(1, 2)) data_max_2 = np.max(data_mat, axis=0) df = pd.DataFrame({'Date': dates_mat, 'Actual': data_actual, 'Max': data_max}) df['Date'] = pd.to_datetime(df['Date'], format='%Y%m%d') df['Date']=df['Date']+pd.Timedelta(days=1) return df, data_max_2 def map_folium(lat, lon,files_dates_selected, within_days ): # Create a base map m = folium.Map(location=[lat, lon], zoom_start=5) folium.Marker(location=[lat, lon], popup=address).add_to(m) # Define the image bounds (SW and NE corners) image_bounds = [[20.0000010001429, -129.99999999985712], [54.9999999998571, -60.00000200014287]] # Add ImageOverlays for each image dates = [] for f in files_dates_selected: overlay = ImageOverlay(image=f, bounds=image_bounds, opacity=.75, mercator_project=False) filename = os.path.basename(f) date_str = re.search(r'(\d{8})', filename).group() formatted_date = f"{date_str[:4]}-{date_str[4:6]}-{date_str[6:8]}" dates.append(formatted_date) overlay.add_to(m) # HTML template for the slider control with dates template_1 = '{% macro html(this, kwargs) %}' + f"""
{dates[within_days]}
{% endmacro %} """ template = template_1+template_2+template_3 # Add the custom control to the map macro = MacroElement() macro._template = Template(template) m.get_root().add_child(macro) colormap_hail = cm.LinearColormap( colors=['blue', 'lightblue', 'pink', 'red'], vmin=0.01, vmax=2) # Add the color legend to the map colormap_hail.caption = 'Legend: Hail (Inches)' colormap_hail.add_to(m) return m #Set up 2 Columns st.set_page_config(layout="wide") col1, col2 = st.columns((2)) #Input Values address = st.sidebar.text_input("Address", "123 Main Street, Dallas, TX 75126") date_focus = st.sidebar.date_input("Date", pd.Timestamp(2023, 7, 1)) within_days = st.sidebar.selectbox('Days Within', (30, 90)) # start_date = st.sidebar.date_input("Start Date", pd.Timestamp(2023, 1, 1)) # end_date = st.sidebar.date_input("End Date", pd.Timestamp(2023, 12, 31)) start_date = date_focus+pd.Timedelta(days=-within_days) end_date = date_focus+pd.Timedelta(days=within_days) date_range = pd.date_range(start=start_date, end=end_date).strftime('%Y%m%d') circle_radius = st.sidebar.selectbox('Box Radius (Miles)', (5, 10, 25)) zoom_dic = {5: 12, 10: 11, 25: 10} zoom = zoom_dic[circle_radius] #Geocode and get Data result = geocode(address) lat, lon = result.values[0] crs_dic = pickle.load(open('data/mrms_hail_crs.pkl', 'rb')) transform = crs_dic['affine'] row, col = rasterio.transform.rowcol(transform, lon, lat) # center=row,col radius = int(np.ceil(circle_radius*1.6)) crop_coords = col-radius, row-radius, col+radius+1, row+radius+1 files = glob.glob(r'webp/**/*.webp', recursive=True) files_dates_selected = [i for i in files if any( i for j in date_range if str(j) in re.search(r'(\d{8})', i).group())] # Get Data df_data, max_values = get_data(row, col, radius) df_data = df_data.query(f"'{start_date}'<=Date<='{end_date}'") df_data['Max'] = df_data['Max'].round(3) df_data['Actual'] = df_data['Actual'].round(3) # Create the bar chart fig = alt.Chart(df_data).mark_bar(size=3, color='red').encode( x='Date:T', # Temporal data type y='Actual:Q', # Quantitative data type color='Actual:Q', # Color based on Actual values tooltip=[ # Adding tooltips alt.Tooltip('Date:T', title='Date'), alt.Tooltip('Actual:Q', title='Actual Value'), alt.Tooltip('Max:Q', title=f'Max Value with {circle_radius} Miles') ] ).configure( view=alt.ViewConfig( strokeOpacity=0 # No border around the chart ) ).configure_axis( grid=False # Disable grid lines ).configure_legend( fillColor='transparent', # Ensure no legend is shown strokeColor='transparent' ) with col1: st.title(f'Hail') try: st.altair_chart(fig, use_container_width=True) csv = convert_df(df_data) st.download_button( label="Download data as CSV", data=csv, file_name='data.csv', mime='text/csv') except: pass with col2: st.title('Hail Mesh') if 'is_first_run' not in st.session_state: # First run st.session_state.is_first_run = True st.components.v1.html(open("data/map.html", 'r').read(), height=500, width=500) else: with st.spinner("Loading... Please wait, it's gonna be great..."): # st_folium(m, height=500) # Not the first run; create a new map m=map_folium(lat, lon,files_dates_selected, within_days ) m.save("map_new.html") st.components.v1.html(open("map_new.html", 'r').read(), height=500, width=500) # st.bokeh_chart(hv.render(nice_plot*points_lat_lon, backend='bokeh'),use_container_width=True) st.markdown(""" """, unsafe_allow_html=True)