Tonic commited on
Commit
7b47d03
·
verified ·
1 Parent(s): 3d8d7f7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -20
app.py CHANGED
@@ -20,27 +20,18 @@ rm_tokenizer = AutoTokenizer.from_pretrained('OpenAssistant/reward-model-deberta
20
  rm_model = AutoModelForSequenceClassification.from_pretrained('OpenAssistant/reward-model-deberta-v3-large-v2', torch_dtype=torch.bfloat16)
21
 
22
  @spaces.GPU
23
- def generate_text(usertitle, content, max_length, temperature, N=3):
24
- input_text = {'title': usertitle, 'content': content}
25
- inputs = tokenizer.apply_chat_template(input_text, return_tensors='pt').cuda()
26
- generated_sequences = model.generate(inputs, max_new_tokens=max_length, temperature=temperature, num_return_sequences=N, do_sample=True)
27
- decoded_sequences = tokenizer.batch_decode(generated_sequences, skip_special_tokens=True)
28
-
29
- def extract_pair(resp):
30
- try:
31
- response = resp.split('[[[Content]]]')[1]
32
- inst, resp = resp.split('[[[User]]]')[:2]
33
- return inst.strip(), resp.strip()
34
- except ValueError:
35
- return "", ""
36
-
37
- def score(resp):
38
- inst, resp = extract_pair(resp)
39
  with torch.no_grad():
40
- inputs = rm_tokenizer(inst, resp, return_tensors='pt', truncation=True, max_length=512)
41
- logits = rm_model(**inputs).logits
42
- score = float(logits[0].cpu())
43
- return score
44
 
45
  best_sequence = max(decoded_sequences, key=score)
46
 
 
20
  rm_model = AutoModelForSequenceClassification.from_pretrained('OpenAssistant/reward-model-deberta-v3-large-v2', torch_dtype=torch.bfloat16)
21
 
22
  @spaces.GPU
23
+ def generate_text(usertitle, content, max_length, temperature, N=5):
24
+ input_text = f"title: {usertitle}\ncontent: {content}"
25
+ inputs = tokenizer(input_text, return_tensors='pt').to('cuda')
26
+ generated_sequences = model.generate(inputs['input_ids'], max_length=max_length, temperature=temperature, num_return_sequences=N, do_sample=True)
27
+ decoded_sequences = [tokenizer.decode(g, skip_special_tokens=True) for g in generated_sequences]
28
+
29
+ def score(sequence):
30
+ inputs = rm_tokenizer(sequence, return_tensors='pt', padding=True, truncation=True, max_length=max_length).to('cuda')
 
 
 
 
 
 
 
 
31
  with torch.no_grad():
32
+ outputs = rm_model(**inputs)
33
+ logits = outputs.logits
34
+ return logits[0][1].item()
 
35
 
36
  best_sequence = max(decoded_sequences, key=score)
37