import gradio as gr import joblib import pandas as pd import numpy as np from sklearn.preprocessing import LabelEncoder, StandardScaler, OneHotEncoder from sklearn.impute import KNNImputer from sklearn.decomposition import PCA # Load your saved model # model = joblib.load("ann_model.joblib") # # Define the prediction function def predict(age, workclass, education, marital_status, occupation, relationship, race, gender, capital_gain, capital_loss, hours_per_week, native_country): features = [age, workclass, education, marital_status, occupation, relationship, race, gender, capital_gain, capital_loss, hours_per_week, native_country] fixed_features = cleaning_features(features) # prediction = model.predict(features) # prediction = 1 # return "Income >50K" if prediction == 1 else "Income <=50K" return fixed_features def cleaning_features(data): le = LabelEncoder() scaler = StandardScaler() encoder = OneHotEncoder(sparse_output=False) numeric_cols = ['age', 'educational-num', 'hours-per-week'] columns_to_encode = ['race','marital-status','relationship'] data.replace({'?': np.nan, 99999: np.nan}, inplace=True) # 1. Scale numerical features data[numeric_cols] = scaler.fit_transform(data[numeric_cols]) # 2. Label encode gender and income data['gender'] = le.fit_transform(data['gender']) # 3. One-hot encode race for N in columns_to_encode: race_encoded = encoder.fit_transform(data[[N]]) race_encoded_cols = encoder.get_feature_names_out([N]) race_encoded_df = pd.DataFrame(race_encoded, columns=race_encoded_cols, index=data.index) # Combine the encoded data with original dataframe data = pd.concat([data.drop(N, axis=1), race_encoded_df], axis=1) # Binarize native country data['native-country'] = data['native-country'].apply(lambda x: x == 'United-States') data['native-country'] = data['native-country'].astype(int) data = pca(data) return data def pca(data): encoder = OneHotEncoder(sparse_output=False) one_hot_encoded = encoder.fit_transform(data[['workclass', 'occupation']]) encoded_columns_df = pd.DataFrame(one_hot_encoded, columns=encoder.get_feature_names_out()) pca_net = PCA(n_components=10) pca_result_net = pca_net.fit_transform(encoded_columns_df) pca_columns = [f'pca_component_{i+1}' for i in range(10)] pca_df = pd.DataFrame(pca_result_net, columns=pca_columns) data = data.drop(columns=['workclass', 'occupation'], axis=1) #remove the original columns data = pd.concat([data, pca_df], axis=1) return data # Create the Gradio interface interface = gr.Interface( fn=predict, inputs=[ gr.Slider(18, 90, step=1, label="Age"), gr.Dropdown( ["Private", "Self-emp-not-inc", "Self-emp-inc", "Federal-gov", "Local-gov", "State-gov", "Without-pay", "Never-worked"], label="Workclass" ), gr.Dropdown( ["Bachelors", "Some-college", "11th", "HS-grad", "Prof-school", "Assoc-acdm", "Assoc-voc", "9th", "7th-8th", "12th", "Masters", "1st-4th", "10th", "Doctorate", "5th-6th", "Preschool"], label="Education" ), gr.Dropdown( ["Married-civ-spouse", "Divorced", "Never-married", "Separated", "Widowed", "Married-spouse-absent", "Married-AF-spouse"], label="Marital Status" ), gr.Dropdown( ["Tech-support", "Craft-repair", "Other-service", "Sales", "Exec-managerial", "Prof-specialty", "Handlers-cleaners", "Machine-op-inspct", "Adm-clerical", "Farming-fishing", "Transport-moving", "Priv-house-serv", "Protective-serv", "Armed-Forces"], label="Occupation" ), gr.Dropdown( ["Wife", "Husband", "Own-child", "Unmarried", "Other-relative", "Not-in-family"], label="Relationship" ), gr.Dropdown( ["White", "Black", "Asian-Pac-Islander", "Amer-Indian-Eskimo", "Other"], label="Race" ), gr.Dropdown( ["Male", "Female"], label="Gender" ), gr.Slider(1, 90, step=1, label="Hours Per Week"), gr.Slider(0, 100000, step=100, label="Capital Gain"), gr.Slider(0, 5000, step=50, label="Capital Loss"), gr.Dropdown( ["United-States", "Other"], label="Native Country" ) ], outputs="text", title="Adult Income Predictor" ) # Launch the app interface.launch()