mozhi
Add application files/ Add lfs tracker
370415f
<?xml version="1.0"?>
<net name="torch_jit" version="11">
<layers>
<layer id="0" name="input" type="Parameter" version="opset1">
<data shape="1,3,224,224" element_type="f32" />
<output>
<port id="0" precision="FP32" names="input">
<dim>1</dim>
<dim>3</dim>
<dim>224</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="1" name="onnx::Conv_701" type="Const" version="opset1">
<data element_type="f32" shape="64, 3, 7, 7" offset="0" size="37632" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_701">
<dim>64</dim>
<dim>3</dim>
<dim>7</dim>
<dim>7</dim>
</port>
</output>
</layer>
<layer id="2" name="Conv_23/WithoutBiases" type="Convolution" version="opset1">
<data strides="2, 2" dilations="1, 1" pads_begin="3, 3" pads_end="3, 3" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>224</dim>
<dim>224</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>3</dim>
<dim>7</dim>
<dim>7</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>112</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="3" name="Reshape_120" type="Const" version="opset1">
<data element_type="f32" shape="1, 64, 1, 1" offset="37632" size="256" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="4" name="Conv_23" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>112</dim>
<dim>112</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.4">
<dim>1</dim>
<dim>64</dim>
<dim>112</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="5" name="Relu_24" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>112</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::MaxPool_266">
<dim>1</dim>
<dim>64</dim>
<dim>112</dim>
<dim>112</dim>
</port>
</output>
</layer>
<layer id="6" name="MaxPool_25" type="MaxPool" version="opset8">
<data strides="2, 2" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" kernel="3, 3" rounding_type="floor" auto_pad="explicit" index_element_type="i64" axis="0" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>112</dim>
<dim>112</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="input.8">
<dim>1</dim>
<dim>64</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="2" precision="I64">
<dim>1</dim>
<dim>64</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="7" name="onnx::Conv_704" type="Const" version="opset1">
<data element_type="f32" shape="128, 64, 1, 1" offset="37888" size="32768" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_704">
<dim>128</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="8" name="Conv_26/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="9" name="Reshape_170" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1, 1" offset="70656" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="10" name="Conv_26" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.16">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="11" name="Relu_27" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_270">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="12" name="onnx::Conv_707" type="Const" version="opset1">
<data element_type="f32" shape="128, 128, 3, 3" offset="71168" size="589824" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_707">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="13" name="Conv_28/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="14" name="Reshape_219" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1, 1" offset="660992" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="15" name="Conv_28" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.24">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="16" name="Relu_29" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_273">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="17" name="onnx::Conv_710" type="Const" version="opset1">
<data element_type="f32" shape="256, 128, 1, 1" offset="661504" size="131072" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_710">
<dim>256</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="18" name="Conv_30/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="19" name="Reshape_268" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="792576" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="20" name="Conv_30" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::Add_709">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="21" name="onnx::Conv_713" type="Const" version="opset1">
<data element_type="f32" shape="256, 64, 1, 1" offset="793600" size="65536" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_713">
<dim>256</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="22" name="Conv_31/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="23" name="Reshape_316" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="859136" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="24" name="Conv_31" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::Add_712">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="25" name="Add_32" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.36">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="26" name="Relu_33" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_279">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="27" name="onnx::Conv_716" type="Const" version="opset1">
<data element_type="f32" shape="128, 256, 1, 1" offset="860160" size="131072" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_716">
<dim>128</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="28" name="Conv_34/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="29" name="Reshape_366" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1, 1" offset="991232" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="30" name="Conv_34" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.44">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="31" name="Relu_35" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_282">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="32" name="onnx::Conv_719" type="Const" version="opset1">
<data element_type="f32" shape="128, 128, 3, 3" offset="991744" size="589824" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_719">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="33" name="Conv_36/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="34" name="Reshape_415" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1, 1" offset="1581568" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="35" name="Conv_36" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.52">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="36" name="Relu_37" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_285">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="37" name="onnx::Conv_722" type="Const" version="opset1">
<data element_type="f32" shape="256, 128, 1, 1" offset="1582080" size="131072" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_722">
<dim>256</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="38" name="Conv_38/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="39" name="Reshape_464" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="1713152" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="40" name="Conv_38" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::Add_721">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="41" name="Add_39" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.60">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="42" name="Relu_40" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_289">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="43" name="onnx::Conv_725" type="Const" version="opset1">
<data element_type="f32" shape="128, 256, 1, 1" offset="1714176" size="131072" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_725">
<dim>128</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="44" name="Conv_41/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="45" name="Reshape_514" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1, 1" offset="1845248" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="46" name="Conv_41" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.68">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="47" name="Relu_42" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_292">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="48" name="onnx::Conv_728" type="Const" version="opset1">
<data element_type="f32" shape="128, 128, 3, 3" offset="1845760" size="589824" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_728">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="49" name="Conv_43/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>128</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="50" name="Reshape_563" type="Const" version="opset1">
<data element_type="f32" shape="1, 128, 1, 1" offset="2435584" size="512" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="51" name="Conv_43" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.76">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="52" name="Relu_44" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_295">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="53" name="onnx::Conv_731" type="Const" version="opset1">
<data element_type="f32" shape="256, 128, 1, 1" offset="2436096" size="131072" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_731">
<dim>256</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="54" name="Conv_45/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="55" name="Reshape_612" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="2567168" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="56" name="Conv_45" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::Add_730">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="57" name="Add_46" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.84">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="58" name="Relu_47" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_299">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="59" name="AveragePool_122" type="AvgPool" version="opset1">
<data kernel="3, 3" strides="1, 1" pads_begin="1, 1" pads_end="1, 1" exclude-pad="false" auto_pad="explicit" rounding_type="floor" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Concat_406">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="60" name="onnx::Conv_734" type="Const" version="opset1">
<data element_type="f32" shape="256, 256, 1, 1" offset="2568192" size="262144" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_734">
<dim>256</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="61" name="Conv_48/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="62" name="Reshape_662" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="2830336" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="63" name="Conv_48" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.92">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="64" name="Relu_49" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_302">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="65" name="onnx::Conv_737" type="Const" version="opset1">
<data element_type="f32" shape="256, 256, 3, 3" offset="2831360" size="2359296" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_737">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="66" name="Conv_50/WithoutBiases" type="Convolution" version="opset1">
<data strides="2, 2" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="67" name="Reshape_711" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="5190656" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="68" name="Conv_50" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.100">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="69" name="Relu_51" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_305">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="70" name="onnx::Conv_740" type="Const" version="opset1">
<data element_type="f32" shape="512, 256, 1, 1" offset="5191680" size="524288" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_740">
<dim>512</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="71" name="Conv_52/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="72" name="Reshape_760" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="5715968" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="73" name="Conv_52" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::Add_739">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="74" name="onnx::Conv_743" type="Const" version="opset1">
<data element_type="f32" shape="512, 256, 1, 1" offset="5718016" size="524288" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_743">
<dim>512</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="75" name="Conv_53/WithoutBiases" type="Convolution" version="opset1">
<data strides="2, 2" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="76" name="Reshape_808" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="6242304" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="77" name="Conv_53" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::Add_742">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="78" name="Add_54" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.112">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="79" name="Relu_55" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_311">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="80" name="onnx::Conv_746" type="Const" version="opset1">
<data element_type="f32" shape="256, 512, 1, 1" offset="6244352" size="524288" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_746">
<dim>256</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="81" name="Conv_56/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="82" name="Reshape_858" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="6768640" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="83" name="Conv_56" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.120">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="84" name="Relu_57" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_314">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="85" name="onnx::Conv_749" type="Const" version="opset1">
<data element_type="f32" shape="256, 256, 3, 3" offset="6769664" size="2359296" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_749">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="86" name="Conv_58/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="87" name="Reshape_907" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="9128960" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="88" name="Conv_58" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.128">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="89" name="Relu_59" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_317">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="90" name="onnx::Conv_752" type="Const" version="opset1">
<data element_type="f32" shape="512, 256, 1, 1" offset="9129984" size="524288" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_752">
<dim>512</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="91" name="Conv_60/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="92" name="Reshape_956" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="9654272" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="93" name="Conv_60" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::Add_751">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="94" name="Add_61" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.136">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="95" name="Relu_62" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_321">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="96" name="onnx::Conv_755" type="Const" version="opset1">
<data element_type="f32" shape="256, 512, 1, 1" offset="9656320" size="524288" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_755">
<dim>256</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="97" name="Conv_63/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="98" name="Reshape_1006" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="10180608" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="99" name="Conv_63" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.144">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="100" name="Relu_64" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_324">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="101" name="onnx::Conv_758" type="Const" version="opset1">
<data element_type="f32" shape="256, 256, 3, 3" offset="10181632" size="2359296" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_758">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="102" name="Conv_65/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="103" name="Reshape_1055" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="12540928" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="104" name="Conv_65" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.152">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="105" name="Relu_66" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_327">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="106" name="onnx::Conv_761" type="Const" version="opset1">
<data element_type="f32" shape="512, 256, 1, 1" offset="12541952" size="524288" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_761">
<dim>512</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="107" name="Conv_67/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="108" name="Reshape_1104" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="13066240" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="109" name="Conv_67" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::Add_760">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="110" name="Add_68" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.160">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="111" name="Relu_69" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_331">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="112" name="onnx::Conv_764" type="Const" version="opset1">
<data element_type="f32" shape="256, 512, 1, 1" offset="13068288" size="524288" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_764">
<dim>256</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="113" name="Conv_70/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="114" name="Reshape_1154" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="13592576" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="115" name="Conv_70" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.168">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="116" name="Relu_71" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_334">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="117" name="onnx::Conv_767" type="Const" version="opset1">
<data element_type="f32" shape="256, 256, 3, 3" offset="13593600" size="2359296" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_767">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="118" name="Conv_72/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="119" name="Reshape_1203" type="Const" version="opset1">
<data element_type="f32" shape="1, 256, 1, 1" offset="15952896" size="1024" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="120" name="Conv_72" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.176">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="121" name="Relu_73" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_337">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="122" name="onnx::Conv_770" type="Const" version="opset1">
<data element_type="f32" shape="512, 256, 1, 1" offset="15953920" size="524288" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_770">
<dim>512</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="123" name="Conv_74/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>28</dim>
<dim>28</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="124" name="Reshape_1252" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="16478208" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="125" name="Conv_74" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::Add_769">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="126" name="Add_75" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.184">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="127" name="Relu_76" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_341">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="128" name="AveragePool_125" type="AvgPool" version="opset1">
<data kernel="3, 3" strides="1, 1" pads_begin="1, 1" pads_end="1, 1" exclude-pad="false" auto_pad="explicit" rounding_type="floor" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="i">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="129" name="Shape_126" type="ShapeOf" version="opset3">
<data output_type="i64" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</input>
<output>
<port id="1" precision="I64" names="onnx::Slice_414">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="130" name="Constant_128" type="Const" version="opset1">
<data element_type="i64" shape="1" offset="16480256" size="8" />
<output>
<port id="0" precision="I64" names="onnx::Slice_416">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="131" name="Constant_129" type="Const" version="opset1">
<data element_type="i64" shape="1" offset="16480264" size="8" />
<output>
<port id="0" precision="I64" names="onnx::Slice_417">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="132" name="Broadcast_2236" type="Const" version="opset1">
<data element_type="i64" shape="1" offset="16480272" size="8" />
<output>
<port id="0" precision="I64">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="133" name="Slice_130" type="StridedSlice" version="opset1">
<data begin_mask="0" end_mask="0" new_axis_mask="" shrink_axis_mask="" ellipsis_mask="" />
<input>
<port id="0" precision="I64">
<dim>4</dim>
</port>
<port id="1" precision="I64">
<dim>1</dim>
</port>
<port id="2" precision="I64">
<dim>1</dim>
</port>
<port id="3" precision="I64">
<dim>1</dim>
</port>
</input>
<output>
<port id="4" precision="I64" names="onnx::Concat_418">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="134" name="onnx::Concat_832" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="16480280" size="16" />
<output>
<port id="0" precision="I64" names="onnx::Concat_832">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="135" name="Concat_131" type="Concat" version="opset1">
<data axis="0" />
<input>
<port id="0" precision="I64">
<dim>2</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="I64" names="onnx::Resize_420">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="136" name="Convert_2258" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="137" name="Convert_2257" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="138" name="Divide_2259" type="Divide" version="opset1">
<data auto_broadcast="numpy" m_pythondiv="true" />
<input>
<port id="0" precision="FP32">
<dim>4</dim>
</port>
<port id="1" precision="FP32">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="139" name="Constant_18022" type="Const" version="opset1">
<data element_type="f32" shape="1" offset="16480296" size="4" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="140" name="Add_2261" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>4</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="141" name="Resize_134" type="Interpolate" version="opset4">
<data mode="linear_onnx" shape_calculation_mode="sizes" coordinate_transformation_mode="pytorch_half_pixel" nearest_mode="floor" antialias="false" pads_begin="0, 0, 0, 0" pads_end="0, 0, 0, 0" cube_coeff="-0.75" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
<port id="2" precision="FP32">
<dim>4</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="onnx::Concat_423">
<dim>1</dim>
<dim>512</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="142" name="Concat_135" type="Concat" version="opset1">
<data axis="1" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::Shape_424">
<dim>1</dim>
<dim>768</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="143" name="onnx::Conv_773" type="Const" version="opset1">
<data element_type="f32" shape="512, 512, 1, 1" offset="16480300" size="1048576" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_773">
<dim>512</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="144" name="Conv_77/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="145" name="Reshape_1302" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="17528876" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="146" name="Conv_77" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.192">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="147" name="Relu_78" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_344">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
</output>
</layer>
<layer id="148" name="onnx::Conv_776" type="Const" version="opset1">
<data element_type="f32" shape="512, 512, 3, 3" offset="17530924" size="9437184" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_776">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="149" name="Conv_79/WithoutBiases" type="Convolution" version="opset1">
<data strides="2, 2" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="150" name="Reshape_1351" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="26968108" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="151" name="Conv_79" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.200">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="152" name="Relu_80" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_347">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="153" name="onnx::Conv_779" type="Const" version="opset1">
<data element_type="f32" shape="1024, 512, 1, 1" offset="26970156" size="2097152" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_779">
<dim>1024</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="154" name="Conv_81/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>1024</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="155" name="Reshape_1400" type="Const" version="opset1">
<data element_type="f32" shape="1, 1024, 1, 1" offset="29067308" size="4096" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="156" name="Conv_81" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::Add_778">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="157" name="onnx::Conv_782" type="Const" version="opset1">
<data element_type="f32" shape="1024, 512, 1, 1" offset="29071404" size="2097152" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_782">
<dim>1024</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="158" name="Conv_82/WithoutBiases" type="Convolution" version="opset1">
<data strides="2, 2" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>28</dim>
<dim>28</dim>
</port>
<port id="1" precision="FP32">
<dim>1024</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="159" name="Reshape_1448" type="Const" version="opset1">
<data element_type="f32" shape="1, 1024, 1, 1" offset="31168556" size="4096" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="160" name="Conv_82" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::Add_781">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="161" name="Add_83" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.212">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="162" name="Relu_84" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_353">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="163" name="onnx::Conv_785" type="Const" version="opset1">
<data element_type="f32" shape="512, 1024, 1, 1" offset="31172652" size="2097152" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_785">
<dim>512</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="164" name="Conv_85/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="165" name="Reshape_1498" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="33269804" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="166" name="Conv_85" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.220">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="167" name="Relu_86" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_356">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="168" name="onnx::Conv_788" type="Const" version="opset1">
<data element_type="f32" shape="512, 512, 3, 3" offset="33271852" size="9437184" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_788">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="169" name="Conv_87/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="170" name="Reshape_1547" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="42709036" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="171" name="Conv_87" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.228">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="172" name="Relu_88" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_359">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="173" name="onnx::Conv_791" type="Const" version="opset1">
<data element_type="f32" shape="1024, 512, 1, 1" offset="42711084" size="2097152" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_791">
<dim>1024</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="174" name="Conv_89/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>1024</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="175" name="Reshape_1596" type="Const" version="opset1">
<data element_type="f32" shape="1, 1024, 1, 1" offset="44808236" size="4096" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="176" name="Conv_89" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::Add_790">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="177" name="Add_90" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.236">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="178" name="Relu_91" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_363">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="179" name="onnx::Conv_794" type="Const" version="opset1">
<data element_type="f32" shape="512, 1024, 1, 1" offset="44812332" size="2097152" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_794">
<dim>512</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="180" name="Conv_92/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="181" name="Reshape_1646" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="46909484" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="182" name="Conv_92" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.244">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="183" name="Relu_93" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_366">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="184" name="onnx::Conv_797" type="Const" version="opset1">
<data element_type="f32" shape="512, 512, 3, 3" offset="46911532" size="9437184" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_797">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="185" name="Conv_94/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="186" name="Reshape_1695" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="56348716" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="187" name="Conv_94" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.252">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="188" name="Relu_95" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_369">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="189" name="onnx::Conv_800" type="Const" version="opset1">
<data element_type="f32" shape="1024, 512, 1, 1" offset="56350764" size="2097152" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_800">
<dim>1024</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="190" name="Conv_96/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>1024</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="191" name="Reshape_1744" type="Const" version="opset1">
<data element_type="f32" shape="1, 1024, 1, 1" offset="58447916" size="4096" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="192" name="Conv_96" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::Add_799">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="193" name="Add_97" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.260">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="194" name="Relu_98" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_373">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="195" name="onnx::Conv_803" type="Const" version="opset1">
<data element_type="f32" shape="512, 1024, 1, 1" offset="58452012" size="2097152" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_803">
<dim>512</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="196" name="Conv_99/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="197" name="Reshape_1794" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="60549164" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="198" name="Conv_99" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.268">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="199" name="Relu_100" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_376">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="200" name="onnx::Conv_806" type="Const" version="opset1">
<data element_type="f32" shape="512, 512, 3, 3" offset="60551212" size="9437184" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_806">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="201" name="Conv_101/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="202" name="Reshape_1843" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="69988396" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="203" name="Conv_101" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.276">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="204" name="Relu_102" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_379">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="205" name="onnx::Conv_809" type="Const" version="opset1">
<data element_type="f32" shape="1024, 512, 1, 1" offset="69990444" size="2097152" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_809">
<dim>1024</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="206" name="Conv_103/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>1024</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="207" name="Reshape_1892" type="Const" version="opset1">
<data element_type="f32" shape="1, 1024, 1, 1" offset="72087596" size="4096" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="208" name="Conv_103" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::Add_808">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="209" name="Add_104" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.284">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="210" name="Relu_105" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_383">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="211" name="onnx::Conv_812" type="Const" version="opset1">
<data element_type="f32" shape="512, 1024, 1, 1" offset="72091692" size="2097152" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_812">
<dim>512</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="212" name="Conv_106/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="213" name="Reshape_1942" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="74188844" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="214" name="Conv_106" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.292">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="215" name="Relu_107" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_386">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="216" name="onnx::Conv_815" type="Const" version="opset1">
<data element_type="f32" shape="512, 512, 3, 3" offset="74190892" size="9437184" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_815">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="217" name="Conv_108/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="218" name="Reshape_1991" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="83628076" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="219" name="Conv_108" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.300">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="220" name="Relu_109" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_389">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="221" name="onnx::Conv_818" type="Const" version="opset1">
<data element_type="f32" shape="1024, 512, 1, 1" offset="83630124" size="2097152" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_818">
<dim>1024</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="222" name="Conv_110/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>1024</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="223" name="Reshape_2040" type="Const" version="opset1">
<data element_type="f32" shape="1, 1024, 1, 1" offset="85727276" size="4096" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="224" name="Conv_110" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::Add_817">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="225" name="Add_111" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.308">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="226" name="Relu_112" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_393">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="227" name="onnx::Conv_821" type="Const" version="opset1">
<data element_type="f32" shape="512, 1024, 1, 1" offset="85731372" size="2097152" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_821">
<dim>512</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="228" name="Conv_113/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="229" name="Reshape_2090" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="87828524" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="230" name="Conv_113" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.316">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="231" name="Relu_114" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_396">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="232" name="onnx::Conv_824" type="Const" version="opset1">
<data element_type="f32" shape="512, 512, 3, 3" offset="87830572" size="9437184" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_824">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="233" name="Conv_115/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>512</dim>
<dim>512</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="234" name="Reshape_2139" type="Const" version="opset1">
<data element_type="f32" shape="1, 512, 1, 1" offset="97267756" size="2048" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="235" name="Conv_115" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.324">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="236" name="Relu_116" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Conv_399">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="237" name="onnx::Conv_827" type="Const" version="opset1">
<data element_type="f32" shape="1024, 512, 1, 1" offset="97269804" size="2097152" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_827">
<dim>1024</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="238" name="Conv_117/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>512</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>1024</dim>
<dim>512</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="239" name="Reshape_2188" type="Const" version="opset1">
<data element_type="f32" shape="1, 1024, 1, 1" offset="99366956" size="4096" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="240" name="Conv_117" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::Add_826">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="241" name="Add_118" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="input.332">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="242" name="Relu_119" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Pad_403">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="243" name="AveragePool_138" type="AvgPool" version="opset1">
<data kernel="3, 3" strides="1, 1" pads_begin="1, 1" pads_end="1, 1" exclude-pad="false" auto_pad="explicit" rounding_type="floor" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="i.3">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</output>
</layer>
<layer id="244" name="Shape_145" type="ShapeOf" version="opset3">
<data output_type="i64" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
</input>
<output>
<port id="1" precision="I64" names="onnx::Slice_434">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="245" name="Constant_147" type="Const" version="opset1">
<data element_type="i64" shape="1" offset="16480256" size="8" />
<output>
<port id="0" precision="I64" names="onnx::Slice_436">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="246" name="Constant_148" type="Const" version="opset1">
<data element_type="i64" shape="1" offset="16480264" size="8" />
<output>
<port id="0" precision="I64" names="onnx::Slice_437">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="247" name="Broadcast_2317" type="Const" version="opset1">
<data element_type="i64" shape="1" offset="16480272" size="8" />
<output>
<port id="0" precision="I64">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="248" name="Slice_149" type="StridedSlice" version="opset1">
<data begin_mask="0" end_mask="0" new_axis_mask="" shrink_axis_mask="" ellipsis_mask="" />
<input>
<port id="0" precision="I64">
<dim>4</dim>
</port>
<port id="1" precision="I64">
<dim>1</dim>
</port>
<port id="2" precision="I64">
<dim>1</dim>
</port>
<port id="3" precision="I64">
<dim>1</dim>
</port>
</input>
<output>
<port id="4" precision="I64" names="onnx::Concat_438">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="249" name="Shape_139" type="ShapeOf" version="opset3">
<data output_type="i64" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>768</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</input>
<output>
<port id="1" precision="I64" names="onnx::Gather_428">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="250" name="Constant_16175" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="99371052" size="16" />
<output>
<port id="0" precision="I64">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="251" name="Constant_16176" type="Const" version="opset1">
<data element_type="i64" shape="" offset="16480256" size="8" />
<output>
<port id="0" precision="I64" />
</output>
</layer>
<layer id="252" name="Gather_16177" type="Gather" version="opset8">
<data batch_dims="0" />
<input>
<port id="0" precision="I64">
<dim>4</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
<port id="2" precision="I64" />
</input>
<output>
<port id="3" precision="I64" names="onnx::Cast_433,onnx::Concat_439">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="253" name="Concat_151" type="Concat" version="opset1">
<data axis="0" />
<input>
<port id="0" precision="I64">
<dim>2</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="I64" names="onnx::Resize_440">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="254" name="Convert_2340" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="255" name="Convert_2339" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="256" name="Divide_2341" type="Divide" version="opset1">
<data auto_broadcast="numpy" m_pythondiv="true" />
<input>
<port id="0" precision="FP32">
<dim>4</dim>
</port>
<port id="1" precision="FP32">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="257" name="Constant_18023" type="Const" version="opset1">
<data element_type="f32" shape="1" offset="16480296" size="4" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="258" name="Add_2343" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>4</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="259" name="Resize_154" type="Interpolate" version="opset4">
<data mode="linear_onnx" shape_calculation_mode="sizes" coordinate_transformation_mode="pytorch_half_pixel" nearest_mode="floor" antialias="false" pads_begin="0, 0, 0, 0" pads_end="0, 0, 0, 0" cube_coeff="-0.75" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>14</dim>
<dim>14</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
<port id="2" precision="FP32">
<dim>4</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="onnx::Concat_443">
<dim>1</dim>
<dim>1024</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="260" name="Concat_155" type="Concat" version="opset1">
<data axis="1" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>768</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1024</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::Shape_444">
<dim>1</dim>
<dim>1792</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="261" name="Constant_172" type="Const" version="opset1">
<data element_type="i32" shape="" offset="99371068" size="4" />
<output>
<port id="0" precision="I32" names="onnx::Range_473" />
</output>
</layer>
<layer id="262" name="Shape_159" type="ShapeOf" version="opset3">
<data output_type="i64" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1792</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</input>
<output>
<port id="1" precision="I64" names="onnx::Gather_445,onnx::Gather_448,onnx::Gather_451">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="263" name="Constant_160" type="Const" version="opset1">
<data element_type="i64" shape="" offset="16480264" size="8" />
<output>
<port id="0" precision="I64" names="onnx::Gather_449" />
</output>
</layer>
<layer id="264" name="Constant_2427" type="Const" version="opset1">
<data element_type="i64" shape="" offset="16480256" size="8" />
<output>
<port id="0" precision="I64" />
</output>
</layer>
<layer id="265" name="Gather_161" type="Gather" version="opset8">
<data batch_dims="0" />
<input>
<port id="0" precision="I64">
<dim>4</dim>
</port>
<port id="1" precision="I64" />
<port id="2" precision="I64" />
</input>
<output>
<port id="3" precision="I64" names="onnx::Unsqueeze_450" />
</output>
</layer>
<layer id="266" name="Cast_171" type="Convert" version="opset1">
<data destination_type="i32" />
<input>
<port id="0" precision="I64" />
</input>
<output>
<port id="1" precision="I32" names="onnx::Range_472" />
</output>
</layer>
<layer id="267" name="Constant_173" type="Const" version="opset1">
<data element_type="i32" shape="" offset="99371072" size="4" />
<output>
<port id="0" precision="I32" names="onnx::Range_474" />
</output>
</layer>
<layer id="268" name="Range_174" type="Range" version="opset4">
<data output_type="i32" />
<input>
<port id="0" precision="I32" />
<port id="1" precision="I32" />
<port id="2" precision="I32" />
</input>
<output>
<port id="3" precision="I32" names="onnx::Unsqueeze_475">
<dim>56</dim>
</port>
</output>
</layer>
<layer id="269" name="Constant_2557" type="Const" version="opset1">
<data element_type="i64" shape="1" offset="16480256" size="8" />
<output>
<port id="0" precision="I64">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="270" name="Unsqueeze_179" type="Unsqueeze" version="opset1">
<input>
<port id="0" precision="I32">
<dim>56</dim>
</port>
<port id="1" precision="I64">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="I32" names="onnx::Unsqueeze_480">
<dim>1</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="271" name="Constant_2559" type="Const" version="opset1">
<data element_type="i64" shape="1" offset="16480272" size="8" />
<output>
<port id="0" precision="I64">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="272" name="Unsqueeze_180" type="Unsqueeze" version="opset1">
<input>
<port id="0" precision="I32">
<dim>1</dim>
<dim>56</dim>
</port>
<port id="1" precision="I64">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="I32" names="onnx::Unsqueeze_481">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="273" name="Constant_2561" type="Const" version="opset1">
<data element_type="i64" shape="1" offset="99371076" size="8" />
<output>
<port id="0" precision="I64">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="274" name="Unsqueeze_181" type="Unsqueeze" version="opset1">
<input>
<port id="0" precision="I32">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
</port>
<port id="1" precision="I64">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="I32" names="onnx::MatMul_482">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="275" name="Constant_2437" type="Const" version="opset1">
<data element_type="i32" shape="" offset="99371072" size="4" />
<output>
<port id="0" precision="I32" />
</output>
</layer>
<layer id="276" name="onnx::Concat_842" type="Const" version="opset1">
<data element_type="i64" shape="1" offset="16480272" size="8" />
<output>
<port id="0" precision="I64" names="onnx::Concat_833,onnx::Concat_834,onnx::Concat_835,onnx::Concat_836,onnx::Concat_837,onnx::Concat_838,onnx::Concat_839,onnx::Concat_840,onnx::Concat_841,onnx::Concat_842,onnx::Concat_843,onnx::Concat_844,onnx::Concat_845,onnx::Concat_846,onnx::Concat_847,onnx::Concat_848,onnx::Concat_849,onnx::Concat_850">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="277" name="Constant_16109" type="Const" version="opset1">
<data element_type="i64" shape="1" offset="99371076" size="8" />
<output>
<port id="0" precision="I64">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="278" name="Constant_2431" type="Const" version="opset1">
<data element_type="i64" shape="" offset="16480256" size="8" />
<output>
<port id="0" precision="I64" />
</output>
</layer>
<layer id="279" name="Gather_164" type="Gather" version="opset8">
<data batch_dims="0" />
<input>
<port id="0" precision="I64">
<dim>4</dim>
</port>
<port id="1" precision="I64">
<dim>1</dim>
</port>
<port id="2" precision="I64" />
</input>
<output>
<port id="3" precision="I64" names="onnx::Concat_460">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="280" name="Concat_166" type="Concat" version="opset1">
<data axis="0" />
<input>
<port id="0" precision="I64">
<dim>1</dim>
</port>
<port id="1" precision="I64">
<dim>1</dim>
</port>
<port id="2" precision="I64">
<dim>1</dim>
</port>
<port id="3" precision="I64">
<dim>1</dim>
</port>
</input>
<output>
<port id="4" precision="I64" names="onnx::ConstantOfShape_461">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="281" name="ConstantOfShape_167" type="Broadcast" version="opset3">
<data mode="numpy" />
<input>
<port id="0" precision="I32" />
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="I32" names="onnx::MatMul_462">
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="282" name="MatMul_185" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="false" />
<input>
<port id="0" precision="I32">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
</port>
<port id="1" precision="I32">
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
</port>
</input>
<output>
<port id="2" precision="I32" names="onnx::Cast_486">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="283" name="Cast_188" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I32">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Div_489">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="284" name="Constant_189" type="Const" version="opset1">
<data element_type="i64" shape="" offset="16480272" size="8" />
<output>
<port id="0" precision="I64" names="onnx::Sub_490" />
</output>
</layer>
<layer id="285" name="Sub_190" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="I64" />
<port id="1" precision="I64" />
</input>
<output>
<port id="2" precision="I64" names="onnx::Cast_491" />
</output>
</layer>
<layer id="286" name="Cast_191" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I64" />
</input>
<output>
<port id="1" precision="FP32" names="onnx::Div_492" />
</output>
</layer>
<layer id="287" name="Div_192" type="Divide" version="opset1">
<data auto_broadcast="numpy" m_pythondiv="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="onnx::Mul_493">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="288" name="Constant_18024" type="Const" version="opset1">
<data element_type="f32" shape="1, 1, 1, 1" offset="99371084" size="4" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="289" name="Mul_199" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::Sub_500">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="290" name="Constant_18025" type="Const" version="opset1">
<data element_type="f32" shape="1, 1, 1, 1" offset="99371088" size="4" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="291" name="Sub_201" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::Expand_502">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="292" name="ConstantOfShape_211" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="99371092" size="32" />
<output>
<port id="0" precision="I64" names="onnx::Expand_521">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="293" name="Expand_212" type="Broadcast" version="opset3">
<data mode="bidirectional" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::Tile_522">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="294" name="Constant_16118" type="Const" version="opset1">
<data element_type="i64" shape="1" offset="16480256" size="8" />
<output>
<port id="0" precision="I64">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="295" name="Constant_2423" type="Const" version="opset1">
<data element_type="i64" shape="" offset="16480256" size="8" />
<output>
<port id="0" precision="I64" />
</output>
</layer>
<layer id="296" name="Gather_158" type="Gather" version="opset8">
<data batch_dims="0" />
<input>
<port id="0" precision="I64">
<dim>4</dim>
</port>
<port id="1" precision="I64">
<dim>1</dim>
</port>
<port id="2" precision="I64" />
</input>
<output>
<port id="3" precision="I64" names="onnx::Concat_515">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="297" name="Concat_209" type="Concat" version="opset1">
<data axis="0" />
<input>
<port id="0" precision="I64">
<dim>1</dim>
</port>
<port id="1" precision="I64">
<dim>1</dim>
</port>
<port id="2" precision="I64">
<dim>1</dim>
</port>
<port id="3" precision="I64">
<dim>1</dim>
</port>
</input>
<output>
<port id="4" precision="I64" names="onnx::Tile_519">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="298" name="Tile_213" type="Tile" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::Cast_523,onnx::Concat_524">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="299" name="Constant_176" type="Const" version="opset1">
<data element_type="i32" shape="" offset="99371068" size="4" />
<output>
<port id="0" precision="I32" names="onnx::Range_477" />
</output>
</layer>
<layer id="300" name="Constant_163" type="Const" version="opset1">
<data element_type="i64" shape="" offset="99371076" size="8" />
<output>
<port id="0" precision="I64" names="onnx::Gather_452" />
</output>
</layer>
<layer id="301" name="Gather_1640" type="Gather" version="opset8">
<data batch_dims="0" />
<input>
<port id="0" precision="I64">
<dim>4</dim>
</port>
<port id="1" precision="I64" />
<port id="2" precision="I64" />
</input>
<output>
<port id="3" precision="I64" names="onnx::Unsqueeze_453" />
</output>
</layer>
<layer id="302" name="Cast_175" type="Convert" version="opset1">
<data destination_type="i32" />
<input>
<port id="0" precision="I64" />
</input>
<output>
<port id="1" precision="I32" names="onnx::Range_476" />
</output>
</layer>
<layer id="303" name="Constant_177" type="Const" version="opset1">
<data element_type="i32" shape="" offset="99371072" size="4" />
<output>
<port id="0" precision="I32" names="onnx::Range_478" />
</output>
</layer>
<layer id="304" name="Range_178" type="Range" version="opset4">
<data output_type="i32" />
<input>
<port id="0" precision="I32" />
<port id="1" precision="I32" />
<port id="2" precision="I32" />
</input>
<output>
<port id="3" precision="I32" names="onnx::Unsqueeze_479">
<dim>56</dim>
</port>
</output>
</layer>
<layer id="305" name="Constant_2563" type="Const" version="opset1">
<data element_type="i64" shape="1" offset="16480256" size="8" />
<output>
<port id="0" precision="I64">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="306" name="Unsqueeze_182" type="Unsqueeze" version="opset1">
<input>
<port id="0" precision="I32">
<dim>56</dim>
</port>
<port id="1" precision="I64">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="I32" names="onnx::Unsqueeze_483">
<dim>1</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="307" name="Constant_2565" type="Const" version="opset1">
<data element_type="i64" shape="1" offset="16480272" size="8" />
<output>
<port id="0" precision="I64">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="308" name="Unsqueeze_183" type="Unsqueeze" version="opset1">
<input>
<port id="0" precision="I32">
<dim>1</dim>
<dim>56</dim>
</port>
<port id="1" precision="I64">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="I32" names="onnx::Unsqueeze_484">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="309" name="Constant_2567" type="Const" version="opset1">
<data element_type="i64" shape="1" offset="99371076" size="8" />
<output>
<port id="0" precision="I64">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="310" name="Unsqueeze_184" type="Unsqueeze" version="opset1">
<input>
<port id="0" precision="I32">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
</port>
<port id="1" precision="I64">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="I32" names="onnx::MatMul_485">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="311" name="Constant_2475" type="Const" version="opset1">
<data element_type="i32" shape="" offset="99371072" size="4" />
<output>
<port id="0" precision="I32" />
</output>
</layer>
<layer id="312" name="Constant_16127" type="Const" version="opset1">
<data element_type="i64" shape="1" offset="16480264" size="8" />
<output>
<port id="0" precision="I64">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="313" name="Gather_1610" type="Gather" version="opset8">
<data batch_dims="0" />
<input>
<port id="0" precision="I64">
<dim>4</dim>
</port>
<port id="1" precision="I64">
<dim>1</dim>
</port>
<port id="2" precision="I64" />
</input>
<output>
<port id="3" precision="I64" names="onnx::Concat_469">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="314" name="Concat_169" type="Concat" version="opset1">
<data axis="0" />
<input>
<port id="0" precision="I64">
<dim>1</dim>
</port>
<port id="1" precision="I64">
<dim>1</dim>
</port>
<port id="2" precision="I64">
<dim>1</dim>
</port>
<port id="3" precision="I64">
<dim>1</dim>
</port>
</input>
<output>
<port id="4" precision="I64" names="onnx::ConstantOfShape_470">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="315" name="ConstantOfShape_170" type="Broadcast" version="opset3">
<data mode="numpy" />
<input>
<port id="0" precision="I32" />
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="I32" names="onnx::MatMul_471">
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="316" name="MatMul_186" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="false" />
<input>
<port id="0" precision="I32">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>1</dim>
</port>
<port id="1" precision="I32">
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
</port>
</input>
<output>
<port id="2" precision="I32" names="onnx::Transpose_487">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="317" name="Convert_17856" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I32">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="318" name="Constant_2571" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="99371124" size="32" />
<output>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="319" name="Cast_193" type="Transpose" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::Div_494">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="320" name="Constant_194" type="Const" version="opset1">
<data element_type="i64" shape="" offset="16480272" size="8" />
<output>
<port id="0" precision="I64" names="onnx::Sub_495" />
</output>
</layer>
<layer id="321" name="Sub_195" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="I64" />
<port id="1" precision="I64" />
</input>
<output>
<port id="2" precision="I64" names="onnx::Cast_496" />
</output>
</layer>
<layer id="322" name="Cast_196" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I64" />
</input>
<output>
<port id="1" precision="FP32" names="onnx::Div_497" />
</output>
</layer>
<layer id="323" name="Div_197" type="Divide" version="opset1">
<data auto_broadcast="numpy" m_pythondiv="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32" />
</input>
<output>
<port id="2" precision="FP32" names="onnx::Mul_498">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="324" name="Constant_18026" type="Const" version="opset1">
<data element_type="f32" shape="1, 1, 1, 1" offset="99371084" size="4" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="325" name="Mul_203" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::Sub_504">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="326" name="Constant_18027" type="Const" version="opset1">
<data element_type="f32" shape="1, 1, 1, 1" offset="99371088" size="4" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="327" name="Sub_205" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::Expand_506">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="328" name="ConstantOfShape_220" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="99371092" size="32" />
<output>
<port id="0" precision="I64" names="onnx::Expand_539">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="329" name="Expand_221" type="Broadcast" version="opset3">
<data mode="bidirectional" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::Tile_540">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="330" name="Constant_16136" type="Const" version="opset1">
<data element_type="i64" shape="1" offset="16480256" size="8" />
<output>
<port id="0" precision="I64">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="331" name="Gather_1580" type="Gather" version="opset8">
<data batch_dims="0" />
<input>
<port id="0" precision="I64">
<dim>4</dim>
</port>
<port id="1" precision="I64">
<dim>1</dim>
</port>
<port id="2" precision="I64" />
</input>
<output>
<port id="3" precision="I64" names="onnx::Concat_533">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="332" name="Concat_218" type="Concat" version="opset1">
<data axis="0" />
<input>
<port id="0" precision="I64">
<dim>1</dim>
</port>
<port id="1" precision="I64">
<dim>1</dim>
</port>
<port id="2" precision="I64">
<dim>1</dim>
</port>
<port id="3" precision="I64">
<dim>1</dim>
</port>
</input>
<output>
<port id="4" precision="I64" names="onnx::Tile_537">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="333" name="Tile_222" type="Tile" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::Cast_541,onnx::Concat_542">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="334" name="Concat_224" type="Concat" version="opset1">
<data axis="1" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1792</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="input.336">
<dim>1</dim>
<dim>1794</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="335" name="descriptor.layer.conv2d.weight" type="Const" version="opset1">
<data element_type="f32" shape="1792, 1794, 1, 1" offset="99371156" size="12859392" />
<output>
<port id="0" precision="FP32" names="descriptor.layer.conv2d.weight">
<dim>1792</dim>
<dim>1794</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="336" name="Conv_225/WithoutBiases" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1794</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>1792</dim>
<dim>1794</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>1792</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="337" name="Reshape_2748" type="Const" version="opset1">
<data element_type="f32" shape="1, 1792, 1, 1" offset="112230548" size="7168" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1792</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="338" name="Conv_225" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1792</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1792</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="tensor">
<dim>1</dim>
<dim>1792</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="339" name="onnx::Reshape_855" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="112237716" size="32" />
<output>
<port id="0" precision="I64" names="onnx::Reshape_855">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="340" name="Reshape_226" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1792</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="tensor.3">
<dim>1</dim>
<dim>1792</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="341" name="Constant_2782" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="112237748" size="32" />
<output>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="342" name="Transpose_227" type="Transpose" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1792</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="tensor.7">
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
<dim>1792</dim>
</port>
</output>
</layer>
<layer id="343" name="onnx::Reshape_859" type="Const" version="opset1">
<data element_type="i64" shape="3" offset="112237780" size="24" />
<output>
<port id="0" precision="I64" names="onnx::Reshape_859">
<dim>3</dim>
</port>
</output>
</layer>
<layer id="344" name="Reshape_228" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
<dim>1792</dim>
</port>
<port id="1" precision="I64">
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::Pow_561">
<dim>1</dim>
<dim>3136</dim>
<dim>1792</dim>
</port>
</output>
</layer>
<layer id="345" name="Constant_18028" type="Const" version="opset1">
<data element_type="f32" shape="1, 1, 1" offset="99371084" size="4" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="346" name="Pow_229" type="Power" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3136</dim>
<dim>1792</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::ReduceSum_564">
<dim>1</dim>
<dim>3136</dim>
<dim>1792</dim>
</port>
</output>
</layer>
<layer id="347" name="Constant_2791" type="Const" version="opset1">
<data element_type="i64" shape="1" offset="16480264" size="8" />
<output>
<port id="0" precision="I64">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="348" name="ReduceSum_230" type="ReduceSum" version="opset1">
<data keep_dims="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3136</dim>
<dim>1792</dim>
</port>
<port id="1" precision="I64">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::Add_565">
<dim>1</dim>
<dim>3136</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="349" name="Constant_18029" type="Const" version="opset1">
<data element_type="f32" shape="1, 1, 3136" offset="112237804" size="12544" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>3136</dim>
</port>
</output>
</layer>
<layer id="350" name="Add_237" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3136</dim>
<dim>1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>3136</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::Sub_575">
<dim>1</dim>
<dim>3136</dim>
<dim>3136</dim>
</port>
</output>
</layer>
<layer id="351" name="Constant_17920" type="Const" version="opset1">
<data element_type="f32" shape="3136, 1792" offset="112250348" size="22478848" />
<output>
<port id="0" precision="FP32">
<dim>3136</dim>
<dim>1792</dim>
</port>
</output>
</layer>
<layer id="352" name="Mul_236" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3136</dim>
<dim>1792</dim>
</port>
<port id="1" precision="FP32">
<dim>3136</dim>
<dim>1792</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::Sub_574">
<dim>1</dim>
<dim>3136</dim>
<dim>3136</dim>
</port>
</output>
</layer>
<layer id="353" name="Sub_238" type="Subtract" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3136</dim>
<dim>3136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>3136</dim>
<dim>3136</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="distance">
<dim>1</dim>
<dim>3136</dim>
<dim>3136</dim>
</port>
</output>
</layer>
<layer id="354" name="Sqrt_239" type="Sqrt" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3136</dim>
<dim>3136</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::TopK_577">
<dim>1</dim>
<dim>3136</dim>
<dim>3136</dim>
</port>
</output>
</layer>
<layer id="355" name="Constant_2803" type="Const" version="opset1">
<data element_type="i64" shape="" offset="99371076" size="8" />
<output>
<port id="0" precision="I64" />
</output>
</layer>
<layer id="356" name="TopK_240" type="TopK" version="opset3">
<data axis="-1" mode="min" sort="value" index_element_type="i64" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3136</dim>
<dim>3136</dim>
</port>
<port id="1" precision="I64" />
</input>
<output>
<port id="2" precision="FP32" names="distance.3">
<dim>1</dim>
<dim>3136</dim>
<dim>3</dim>
</port>
<port id="3" precision="I64" names="582">
<dim>1</dim>
<dim>3136</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="357" name="Constant_18030" type="Const" version="opset1">
<data element_type="f32" shape="1, 1, 1" offset="134729196" size="4" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="358" name="Neg_241" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3136</dim>
<dim>3</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::Softmax_583">
<dim>1</dim>
<dim>3136</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="359" name="Softmax_242" type="SoftMax" version="opset8">
<data axis="2" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3136</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="onnx::Gather_584">
<dim>1</dim>
<dim>3136</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="360" name="Constant_243" type="Const" version="opset1">
<data element_type="i64" shape="" offset="16480256" size="8" />
<output>
<port id="0" precision="I64" names="onnx::Gather_585" />
</output>
</layer>
<layer id="361" name="Constant_2815" type="Const" version="opset1">
<data element_type="i64" shape="" offset="16480264" size="8" />
<output>
<port id="0" precision="I64" />
</output>
</layer>
<layer id="362" name="Gather_244" type="Gather" version="opset8">
<data batch_dims="0" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3136</dim>
<dim>3</dim>
</port>
<port id="1" precision="I64" />
<port id="2" precision="I64" />
</input>
<output>
<port id="3" precision="FP32" names="onnx::Mul_586">
<dim>1</dim>
<dim>3136</dim>
</port>
</output>
</layer>
<layer id="363" name="Constant_245" type="Const" version="opset1">
<data element_type="i64" shape="" offset="16480256" size="8" />
<output>
<port id="0" precision="I64" names="onnx::Gather_587" />
</output>
</layer>
<layer id="364" name="Constant_2818" type="Const" version="opset1">
<data element_type="i64" shape="" offset="16480264" size="8" />
<output>
<port id="0" precision="I64" />
</output>
</layer>
<layer id="365" name="Gather_246" type="Gather" version="opset8">
<data batch_dims="0" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3136</dim>
<dim>3</dim>
</port>
<port id="1" precision="I64" />
<port id="2" precision="I64" />
</input>
<output>
<port id="3" precision="FP32" names="onnx::Mul_588">
<dim>1</dim>
<dim>3136</dim>
</port>
</output>
</layer>
<layer id="366" name="Mul_247" type="Multiply" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>3136</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::Unsqueeze_589">
<dim>1</dim>
<dim>3136</dim>
</port>
</output>
</layer>
<layer id="367" name="Constant_2821" type="Const" version="opset1">
<data element_type="i64" shape="1" offset="134729200" size="8" />
<output>
<port id="0" precision="I64">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="368" name="Unsqueeze_248" type="Unsqueeze" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3136</dim>
</port>
<port id="1" precision="I64">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="tensor.11">
<dim>1</dim>
<dim>3136</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="369" name="Shape_249" type="ShapeOf" version="opset3">
<data output_type="i64" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3136</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="1" precision="I64" names="onnx::Gather_591,onnx::Gather_594">
<dim>3</dim>
</port>
</output>
</layer>
<layer id="370" name="Constant_250" type="Const" version="opset1">
<data element_type="i64" shape="" offset="16480256" size="8" />
<output>
<port id="0" precision="I64" names="onnx::Gather_592" />
</output>
</layer>
<layer id="371" name="Constant_2825" type="Const" version="opset1">
<data element_type="i64" shape="" offset="16480256" size="8" />
<output>
<port id="0" precision="I64" />
</output>
</layer>
<layer id="372" name="Gather_251" type="Gather" version="opset8">
<data batch_dims="0" />
<input>
<port id="0" precision="I64">
<dim>3</dim>
</port>
<port id="1" precision="I64" />
<port id="2" precision="I64" />
</input>
<output>
<port id="3" precision="I64" names="onnx::Cast_598,onnx::Cast_599,onnx::Div_593,onnx::Unsqueeze_600" />
</output>
</layer>
<layer id="373" name="Constant_2839" type="Const" version="opset1">
<data element_type="i64" shape="1" offset="16480256" size="8" />
<output>
<port id="0" precision="I64">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="374" name="Unsqueeze_263" type="Unsqueeze" version="opset1">
<input>
<port id="0" precision="I64" />
<port id="1" precision="I64">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="I64" names="onnx::Concat_607">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="375" name="onnx::Concat_865" type="Const" version="opset1">
<data element_type="i64" shape="1" offset="134729208" size="8" />
<output>
<port id="0" precision="I64" names="onnx::Concat_864,onnx::Concat_865,onnx::Concat_866,onnx::Concat_867">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="376" name="Constant_253" type="Const" version="opset1">
<data element_type="i64" shape="" offset="16480264" size="8" />
<output>
<port id="0" precision="I64" names="onnx::Gather_595" />
</output>
</layer>
<layer id="377" name="Constant_2829" type="Const" version="opset1">
<data element_type="i64" shape="" offset="16480256" size="8" />
<output>
<port id="0" precision="I64" />
</output>
</layer>
<layer id="378" name="Gather_254" type="Gather" version="opset8">
<data batch_dims="0" />
<input>
<port id="0" precision="I64">
<dim>3</dim>
</port>
<port id="1" precision="I64" />
<port id="2" precision="I64" />
</input>
<output>
<port id="3" precision="I64" names="inferred_length.3,onnx::Cast_602,onnx::Cast_603,onnx::Div_596" />
</output>
</layer>
<layer id="379" name="Constant_2841" type="Const" version="opset1">
<data element_type="i64" shape="1" offset="16480256" size="8" />
<output>
<port id="0" precision="I64">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="380" name="Unsqueeze_264" type="Unsqueeze" version="opset1">
<input>
<port id="0" precision="I64" />
<port id="1" precision="I64">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="I64" names="onnx::Concat_610">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="381" name="Concat_265" type="Concat" version="opset1">
<data axis="0" />
<input>
<port id="0" precision="I64">
<dim>1</dim>
</port>
<port id="1" precision="I64">
<dim>1</dim>
</port>
<port id="2" precision="I64">
<dim>1</dim>
</port>
<port id="3" precision="I64">
<dim>1</dim>
</port>
</input>
<output>
<port id="4" precision="I64" names="onnx::Reshape_611">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="382" name="Reshape_266" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3136</dim>
<dim>1</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="tensor.15">
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="383" name="Constant_17907" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="134729216" size="32" />
<output>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="384" name="Transpose_267" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
<dim>1</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="tensor.19">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="385" name="Constant_2968" type="Const" version="opset1">
<data element_type="i64" shape="1" offset="16480256" size="8" />
<output>
<port id="0" precision="I64">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="386" name="Unsqueeze_268" type="Unsqueeze" version="opset1">
<input>
<port id="0" precision="I64" />
<port id="1" precision="I64">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="I64" names="onnx::Concat_616">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="387" name="Constant_2970" type="Const" version="opset1">
<data element_type="i64" shape="1" offset="16480256" size="8" />
<output>
<port id="0" precision="I64">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="388" name="Unsqueeze_269" type="Unsqueeze" version="opset1">
<input>
<port id="0" precision="I64" />
<port id="1" precision="I64">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="I64" names="onnx::Concat_617">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="389" name="Concat_270" type="Concat" version="opset1">
<data axis="0" />
<input>
<port id="0" precision="I64">
<dim>1</dim>
</port>
<port id="1" precision="I64">
<dim>1</dim>
</port>
<port id="2" precision="I64">
<dim>1</dim>
</port>
<port id="3" precision="I64">
<dim>1</dim>
</port>
</input>
<output>
<port id="4" precision="I64" names="onnx::Reshape_620">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="390" name="Reshape_271" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::ReduceMean_621">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="391" name="Constant_3095" type="Const" version="opset1">
<data element_type="i64" shape="1" offset="16480272" size="8" />
<output>
<port id="0" precision="I64">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="392" name="ReduceMean_272" type="ReduceMean" version="opset1">
<data keep_dims="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="I64">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="anomaly_map">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</output>
</layer>
<layer id="393" name="Shape_273" type="ShapeOf" version="opset3">
<data output_type="i64" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
</input>
<output>
<port id="1" precision="I64" names="onnx::Slice_624">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="394" name="Constant_275" type="Const" version="opset1">
<data element_type="i64" shape="1" offset="16480256" size="8" />
<output>
<port id="0" precision="I64" names="onnx::Slice_626">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="395" name="Constant_276" type="Const" version="opset1">
<data element_type="i64" shape="1" offset="16480264" size="8" />
<output>
<port id="0" precision="I64" names="onnx::Slice_627">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="396" name="Broadcast_3103" type="Const" version="opset1">
<data element_type="i64" shape="1" offset="16480272" size="8" />
<output>
<port id="0" precision="I64">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="397" name="Slice_277" type="StridedSlice" version="opset1">
<data begin_mask="0" end_mask="0" new_axis_mask="" shrink_axis_mask="" ellipsis_mask="" />
<input>
<port id="0" precision="I64">
<dim>4</dim>
</port>
<port id="1" precision="I64">
<dim>1</dim>
</port>
<port id="2" precision="I64">
<dim>1</dim>
</port>
<port id="3" precision="I64">
<dim>1</dim>
</port>
</input>
<output>
<port id="4" precision="I64" names="onnx::Concat_628">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="398" name="onnx::Concat_868" type="Const" version="opset1">
<data element_type="i64" shape="2" offset="134729248" size="16" />
<output>
<port id="0" precision="I64" names="onnx::Concat_868">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="399" name="Concat_278" type="Concat" version="opset1">
<data axis="0" />
<input>
<port id="0" precision="I64">
<dim>2</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="I64" names="onnx::Resize_630">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="400" name="Convert_3125" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="401" name="Convert_3124" type="Convert" version="opset1">
<data destination_type="f32" />
<input>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="1" precision="FP32">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="402" name="Divide_3126" type="Divide" version="opset1">
<data auto_broadcast="numpy" m_pythondiv="true" />
<input>
<port id="0" precision="FP32">
<dim>4</dim>
</port>
<port id="1" precision="FP32">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="403" name="Constant_18031" type="Const" version="opset1">
<data element_type="f32" shape="1" offset="16480296" size="4" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="404" name="Add_3128" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>4</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="405" name="Resize_281" type="Interpolate" version="opset4">
<data mode="linear_onnx" shape_calculation_mode="sizes" coordinate_transformation_mode="pytorch_half_pixel" nearest_mode="floor" antialias="false" pads_begin="0, 0, 0, 0" pads_end="0, 0, 0, 0" cube_coeff="-0.75" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>56</dim>
<dim>56</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
<port id="2" precision="FP32">
<dim>4</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="onnx::Shape_633">
<dim>1</dim>
<dim>1</dim>
<dim>224</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="406" name="Split_3263.0" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="134729264" size="32" />
<output>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="407" name="Split_3263.1" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="134729264" size="32" />
<output>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="408" name="Constant_3261" type="Const" version="opset1">
<data element_type="f32" shape="" offset="99371068" size="4" />
<output>
<port id="0" precision="FP32" />
</output>
</layer>
<layer id="409" name="Pad_317" type="Pad" version="opset1">
<data pad_mode="reflect" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>224</dim>
<dim>224</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
<port id="2" precision="I64">
<dim>4</dim>
</port>
<port id="3" precision="FP32" />
</input>
<output>
<port id="4" precision="FP32" names="onnx::Conv_692">
<dim>1</dim>
<dim>1</dim>
<dim>256</dim>
<dim>256</dim>
</port>
</output>
</layer>
<layer id="410" name="Cast_291" type="Const" version="opset1">
<data element_type="f32" shape="1, 1, 33, 33" offset="134729296" size="4356" />
<output>
<port id="0" precision="FP32" names="onnx::Conv_648">
<dim>1</dim>
<dim>1</dim>
<dim>33</dim>
<dim>33</dim>
</port>
</output>
</layer>
<layer id="411" name="Conv_318" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>256</dim>
<dim>256</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>33</dim>
<dim>33</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="onnx::Reshape_693">
<dim>1</dim>
<dim>1</dim>
<dim>224</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="412" name="Shape_292" type="ShapeOf" version="opset3">
<data output_type="i64" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>224</dim>
<dim>224</dim>
</port>
</input>
<output>
<port id="1" precision="I64" names="onnx::Gather_649,onnx::Gather_652,onnx::Gather_655,onnx::Gather_658,onnx::Reshape_698">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="413" name="output" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>224</dim>
<dim>224</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="output">
<dim>1</dim>
<dim>1</dim>
<dim>224</dim>
<dim>224</dim>
</port>
</output>
</layer>
<layer id="414" name="output/sink_port_0" type="Result" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>224</dim>
<dim>224</dim>
</port>
</input>
</layer>
</layers>
<edges>
<edge from-layer="0" from-port="0" to-layer="2" to-port="0" />
<edge from-layer="1" from-port="0" to-layer="2" to-port="1" />
<edge from-layer="2" from-port="2" to-layer="4" to-port="0" />
<edge from-layer="3" from-port="0" to-layer="4" to-port="1" />
<edge from-layer="4" from-port="2" to-layer="5" to-port="0" />
<edge from-layer="5" from-port="1" to-layer="6" to-port="0" />
<edge from-layer="6" from-port="1" to-layer="22" to-port="0" />
<edge from-layer="6" from-port="1" to-layer="8" to-port="0" />
<edge from-layer="7" from-port="0" to-layer="8" to-port="1" />
<edge from-layer="8" from-port="2" to-layer="10" to-port="0" />
<edge from-layer="9" from-port="0" to-layer="10" to-port="1" />
<edge from-layer="10" from-port="2" to-layer="11" to-port="0" />
<edge from-layer="11" from-port="1" to-layer="13" to-port="0" />
<edge from-layer="12" from-port="0" to-layer="13" to-port="1" />
<edge from-layer="13" from-port="2" to-layer="15" to-port="0" />
<edge from-layer="14" from-port="0" to-layer="15" to-port="1" />
<edge from-layer="15" from-port="2" to-layer="16" to-port="0" />
<edge from-layer="16" from-port="1" to-layer="18" to-port="0" />
<edge from-layer="17" from-port="0" to-layer="18" to-port="1" />
<edge from-layer="18" from-port="2" to-layer="20" to-port="0" />
<edge from-layer="19" from-port="0" to-layer="20" to-port="1" />
<edge from-layer="20" from-port="2" to-layer="25" to-port="0" />
<edge from-layer="21" from-port="0" to-layer="22" to-port="1" />
<edge from-layer="22" from-port="2" to-layer="24" to-port="0" />
<edge from-layer="23" from-port="0" to-layer="24" to-port="1" />
<edge from-layer="24" from-port="2" to-layer="25" to-port="1" />
<edge from-layer="25" from-port="2" to-layer="26" to-port="0" />
<edge from-layer="26" from-port="1" to-layer="28" to-port="0" />
<edge from-layer="26" from-port="1" to-layer="41" to-port="1" />
<edge from-layer="27" from-port="0" to-layer="28" to-port="1" />
<edge from-layer="28" from-port="2" to-layer="30" to-port="0" />
<edge from-layer="29" from-port="0" to-layer="30" to-port="1" />
<edge from-layer="30" from-port="2" to-layer="31" to-port="0" />
<edge from-layer="31" from-port="1" to-layer="33" to-port="0" />
<edge from-layer="32" from-port="0" to-layer="33" to-port="1" />
<edge from-layer="33" from-port="2" to-layer="35" to-port="0" />
<edge from-layer="34" from-port="0" to-layer="35" to-port="1" />
<edge from-layer="35" from-port="2" to-layer="36" to-port="0" />
<edge from-layer="36" from-port="1" to-layer="38" to-port="0" />
<edge from-layer="37" from-port="0" to-layer="38" to-port="1" />
<edge from-layer="38" from-port="2" to-layer="40" to-port="0" />
<edge from-layer="39" from-port="0" to-layer="40" to-port="1" />
<edge from-layer="40" from-port="2" to-layer="41" to-port="0" />
<edge from-layer="41" from-port="2" to-layer="42" to-port="0" />
<edge from-layer="42" from-port="1" to-layer="44" to-port="0" />
<edge from-layer="42" from-port="1" to-layer="57" to-port="1" />
<edge from-layer="43" from-port="0" to-layer="44" to-port="1" />
<edge from-layer="44" from-port="2" to-layer="46" to-port="0" />
<edge from-layer="45" from-port="0" to-layer="46" to-port="1" />
<edge from-layer="46" from-port="2" to-layer="47" to-port="0" />
<edge from-layer="47" from-port="1" to-layer="49" to-port="0" />
<edge from-layer="48" from-port="0" to-layer="49" to-port="1" />
<edge from-layer="49" from-port="2" to-layer="51" to-port="0" />
<edge from-layer="50" from-port="0" to-layer="51" to-port="1" />
<edge from-layer="51" from-port="2" to-layer="52" to-port="0" />
<edge from-layer="52" from-port="1" to-layer="54" to-port="0" />
<edge from-layer="53" from-port="0" to-layer="54" to-port="1" />
<edge from-layer="54" from-port="2" to-layer="56" to-port="0" />
<edge from-layer="55" from-port="0" to-layer="56" to-port="1" />
<edge from-layer="56" from-port="2" to-layer="57" to-port="0" />
<edge from-layer="57" from-port="2" to-layer="58" to-port="0" />
<edge from-layer="58" from-port="1" to-layer="59" to-port="0" />
<edge from-layer="58" from-port="1" to-layer="75" to-port="0" />
<edge from-layer="58" from-port="1" to-layer="61" to-port="0" />
<edge from-layer="59" from-port="1" to-layer="142" to-port="0" />
<edge from-layer="60" from-port="0" to-layer="61" to-port="1" />
<edge from-layer="61" from-port="2" to-layer="63" to-port="0" />
<edge from-layer="62" from-port="0" to-layer="63" to-port="1" />
<edge from-layer="63" from-port="2" to-layer="64" to-port="0" />
<edge from-layer="64" from-port="1" to-layer="66" to-port="0" />
<edge from-layer="65" from-port="0" to-layer="66" to-port="1" />
<edge from-layer="66" from-port="2" to-layer="68" to-port="0" />
<edge from-layer="67" from-port="0" to-layer="68" to-port="1" />
<edge from-layer="68" from-port="2" to-layer="69" to-port="0" />
<edge from-layer="69" from-port="1" to-layer="71" to-port="0" />
<edge from-layer="70" from-port="0" to-layer="71" to-port="1" />
<edge from-layer="71" from-port="2" to-layer="73" to-port="0" />
<edge from-layer="72" from-port="0" to-layer="73" to-port="1" />
<edge from-layer="73" from-port="2" to-layer="78" to-port="0" />
<edge from-layer="74" from-port="0" to-layer="75" to-port="1" />
<edge from-layer="75" from-port="2" to-layer="77" to-port="0" />
<edge from-layer="76" from-port="0" to-layer="77" to-port="1" />
<edge from-layer="77" from-port="2" to-layer="78" to-port="1" />
<edge from-layer="78" from-port="2" to-layer="79" to-port="0" />
<edge from-layer="79" from-port="1" to-layer="81" to-port="0" />
<edge from-layer="79" from-port="1" to-layer="94" to-port="1" />
<edge from-layer="80" from-port="0" to-layer="81" to-port="1" />
<edge from-layer="81" from-port="2" to-layer="83" to-port="0" />
<edge from-layer="82" from-port="0" to-layer="83" to-port="1" />
<edge from-layer="83" from-port="2" to-layer="84" to-port="0" />
<edge from-layer="84" from-port="1" to-layer="86" to-port="0" />
<edge from-layer="85" from-port="0" to-layer="86" to-port="1" />
<edge from-layer="86" from-port="2" to-layer="88" to-port="0" />
<edge from-layer="87" from-port="0" to-layer="88" to-port="1" />
<edge from-layer="88" from-port="2" to-layer="89" to-port="0" />
<edge from-layer="89" from-port="1" to-layer="91" to-port="0" />
<edge from-layer="90" from-port="0" to-layer="91" to-port="1" />
<edge from-layer="91" from-port="2" to-layer="93" to-port="0" />
<edge from-layer="92" from-port="0" to-layer="93" to-port="1" />
<edge from-layer="93" from-port="2" to-layer="94" to-port="0" />
<edge from-layer="94" from-port="2" to-layer="95" to-port="0" />
<edge from-layer="95" from-port="1" to-layer="97" to-port="0" />
<edge from-layer="95" from-port="1" to-layer="110" to-port="1" />
<edge from-layer="96" from-port="0" to-layer="97" to-port="1" />
<edge from-layer="97" from-port="2" to-layer="99" to-port="0" />
<edge from-layer="98" from-port="0" to-layer="99" to-port="1" />
<edge from-layer="99" from-port="2" to-layer="100" to-port="0" />
<edge from-layer="100" from-port="1" to-layer="102" to-port="0" />
<edge from-layer="101" from-port="0" to-layer="102" to-port="1" />
<edge from-layer="102" from-port="2" to-layer="104" to-port="0" />
<edge from-layer="103" from-port="0" to-layer="104" to-port="1" />
<edge from-layer="104" from-port="2" to-layer="105" to-port="0" />
<edge from-layer="105" from-port="1" to-layer="107" to-port="0" />
<edge from-layer="106" from-port="0" to-layer="107" to-port="1" />
<edge from-layer="107" from-port="2" to-layer="109" to-port="0" />
<edge from-layer="108" from-port="0" to-layer="109" to-port="1" />
<edge from-layer="109" from-port="2" to-layer="110" to-port="0" />
<edge from-layer="110" from-port="2" to-layer="111" to-port="0" />
<edge from-layer="111" from-port="1" to-layer="113" to-port="0" />
<edge from-layer="111" from-port="1" to-layer="126" to-port="1" />
<edge from-layer="112" from-port="0" to-layer="113" to-port="1" />
<edge from-layer="113" from-port="2" to-layer="115" to-port="0" />
<edge from-layer="114" from-port="0" to-layer="115" to-port="1" />
<edge from-layer="115" from-port="2" to-layer="116" to-port="0" />
<edge from-layer="116" from-port="1" to-layer="118" to-port="0" />
<edge from-layer="117" from-port="0" to-layer="118" to-port="1" />
<edge from-layer="118" from-port="2" to-layer="120" to-port="0" />
<edge from-layer="119" from-port="0" to-layer="120" to-port="1" />
<edge from-layer="120" from-port="2" to-layer="121" to-port="0" />
<edge from-layer="121" from-port="1" to-layer="123" to-port="0" />
<edge from-layer="122" from-port="0" to-layer="123" to-port="1" />
<edge from-layer="123" from-port="2" to-layer="125" to-port="0" />
<edge from-layer="124" from-port="0" to-layer="125" to-port="1" />
<edge from-layer="125" from-port="2" to-layer="126" to-port="0" />
<edge from-layer="126" from-port="2" to-layer="127" to-port="0" />
<edge from-layer="127" from-port="1" to-layer="144" to-port="0" />
<edge from-layer="127" from-port="1" to-layer="158" to-port="0" />
<edge from-layer="127" from-port="1" to-layer="128" to-port="0" />
<edge from-layer="128" from-port="1" to-layer="129" to-port="0" />
<edge from-layer="128" from-port="1" to-layer="141" to-port="0" />
<edge from-layer="129" from-port="1" to-layer="133" to-port="0" />
<edge from-layer="129" from-port="1" to-layer="137" to-port="0" />
<edge from-layer="130" from-port="0" to-layer="133" to-port="1" />
<edge from-layer="131" from-port="0" to-layer="133" to-port="2" />
<edge from-layer="132" from-port="0" to-layer="133" to-port="3" />
<edge from-layer="133" from-port="4" to-layer="135" to-port="0" />
<edge from-layer="134" from-port="0" to-layer="135" to-port="1" />
<edge from-layer="135" from-port="2" to-layer="136" to-port="0" />
<edge from-layer="135" from-port="2" to-layer="141" to-port="1" />
<edge from-layer="136" from-port="1" to-layer="138" to-port="0" />
<edge from-layer="137" from-port="1" to-layer="138" to-port="1" />
<edge from-layer="138" from-port="2" to-layer="140" to-port="0" />
<edge from-layer="139" from-port="0" to-layer="140" to-port="1" />
<edge from-layer="140" from-port="2" to-layer="141" to-port="2" />
<edge from-layer="141" from-port="3" to-layer="142" to-port="1" />
<edge from-layer="142" from-port="2" to-layer="260" to-port="0" />
<edge from-layer="142" from-port="2" to-layer="249" to-port="0" />
<edge from-layer="143" from-port="0" to-layer="144" to-port="1" />
<edge from-layer="144" from-port="2" to-layer="146" to-port="0" />
<edge from-layer="145" from-port="0" to-layer="146" to-port="1" />
<edge from-layer="146" from-port="2" to-layer="147" to-port="0" />
<edge from-layer="147" from-port="1" to-layer="149" to-port="0" />
<edge from-layer="148" from-port="0" to-layer="149" to-port="1" />
<edge from-layer="149" from-port="2" to-layer="151" to-port="0" />
<edge from-layer="150" from-port="0" to-layer="151" to-port="1" />
<edge from-layer="151" from-port="2" to-layer="152" to-port="0" />
<edge from-layer="152" from-port="1" to-layer="154" to-port="0" />
<edge from-layer="153" from-port="0" to-layer="154" to-port="1" />
<edge from-layer="154" from-port="2" to-layer="156" to-port="0" />
<edge from-layer="155" from-port="0" to-layer="156" to-port="1" />
<edge from-layer="156" from-port="2" to-layer="161" to-port="0" />
<edge from-layer="157" from-port="0" to-layer="158" to-port="1" />
<edge from-layer="158" from-port="2" to-layer="160" to-port="0" />
<edge from-layer="159" from-port="0" to-layer="160" to-port="1" />
<edge from-layer="160" from-port="2" to-layer="161" to-port="1" />
<edge from-layer="161" from-port="2" to-layer="162" to-port="0" />
<edge from-layer="162" from-port="1" to-layer="177" to-port="1" />
<edge from-layer="162" from-port="1" to-layer="164" to-port="0" />
<edge from-layer="163" from-port="0" to-layer="164" to-port="1" />
<edge from-layer="164" from-port="2" to-layer="166" to-port="0" />
<edge from-layer="165" from-port="0" to-layer="166" to-port="1" />
<edge from-layer="166" from-port="2" to-layer="167" to-port="0" />
<edge from-layer="167" from-port="1" to-layer="169" to-port="0" />
<edge from-layer="168" from-port="0" to-layer="169" to-port="1" />
<edge from-layer="169" from-port="2" to-layer="171" to-port="0" />
<edge from-layer="170" from-port="0" to-layer="171" to-port="1" />
<edge from-layer="171" from-port="2" to-layer="172" to-port="0" />
<edge from-layer="172" from-port="1" to-layer="174" to-port="0" />
<edge from-layer="173" from-port="0" to-layer="174" to-port="1" />
<edge from-layer="174" from-port="2" to-layer="176" to-port="0" />
<edge from-layer="175" from-port="0" to-layer="176" to-port="1" />
<edge from-layer="176" from-port="2" to-layer="177" to-port="0" />
<edge from-layer="177" from-port="2" to-layer="178" to-port="0" />
<edge from-layer="178" from-port="1" to-layer="193" to-port="1" />
<edge from-layer="178" from-port="1" to-layer="180" to-port="0" />
<edge from-layer="179" from-port="0" to-layer="180" to-port="1" />
<edge from-layer="180" from-port="2" to-layer="182" to-port="0" />
<edge from-layer="181" from-port="0" to-layer="182" to-port="1" />
<edge from-layer="182" from-port="2" to-layer="183" to-port="0" />
<edge from-layer="183" from-port="1" to-layer="185" to-port="0" />
<edge from-layer="184" from-port="0" to-layer="185" to-port="1" />
<edge from-layer="185" from-port="2" to-layer="187" to-port="0" />
<edge from-layer="186" from-port="0" to-layer="187" to-port="1" />
<edge from-layer="187" from-port="2" to-layer="188" to-port="0" />
<edge from-layer="188" from-port="1" to-layer="190" to-port="0" />
<edge from-layer="189" from-port="0" to-layer="190" to-port="1" />
<edge from-layer="190" from-port="2" to-layer="192" to-port="0" />
<edge from-layer="191" from-port="0" to-layer="192" to-port="1" />
<edge from-layer="192" from-port="2" to-layer="193" to-port="0" />
<edge from-layer="193" from-port="2" to-layer="194" to-port="0" />
<edge from-layer="194" from-port="1" to-layer="196" to-port="0" />
<edge from-layer="194" from-port="1" to-layer="209" to-port="1" />
<edge from-layer="195" from-port="0" to-layer="196" to-port="1" />
<edge from-layer="196" from-port="2" to-layer="198" to-port="0" />
<edge from-layer="197" from-port="0" to-layer="198" to-port="1" />
<edge from-layer="198" from-port="2" to-layer="199" to-port="0" />
<edge from-layer="199" from-port="1" to-layer="201" to-port="0" />
<edge from-layer="200" from-port="0" to-layer="201" to-port="1" />
<edge from-layer="201" from-port="2" to-layer="203" to-port="0" />
<edge from-layer="202" from-port="0" to-layer="203" to-port="1" />
<edge from-layer="203" from-port="2" to-layer="204" to-port="0" />
<edge from-layer="204" from-port="1" to-layer="206" to-port="0" />
<edge from-layer="205" from-port="0" to-layer="206" to-port="1" />
<edge from-layer="206" from-port="2" to-layer="208" to-port="0" />
<edge from-layer="207" from-port="0" to-layer="208" to-port="1" />
<edge from-layer="208" from-port="2" to-layer="209" to-port="0" />
<edge from-layer="209" from-port="2" to-layer="210" to-port="0" />
<edge from-layer="210" from-port="1" to-layer="225" to-port="1" />
<edge from-layer="210" from-port="1" to-layer="212" to-port="0" />
<edge from-layer="211" from-port="0" to-layer="212" to-port="1" />
<edge from-layer="212" from-port="2" to-layer="214" to-port="0" />
<edge from-layer="213" from-port="0" to-layer="214" to-port="1" />
<edge from-layer="214" from-port="2" to-layer="215" to-port="0" />
<edge from-layer="215" from-port="1" to-layer="217" to-port="0" />
<edge from-layer="216" from-port="0" to-layer="217" to-port="1" />
<edge from-layer="217" from-port="2" to-layer="219" to-port="0" />
<edge from-layer="218" from-port="0" to-layer="219" to-port="1" />
<edge from-layer="219" from-port="2" to-layer="220" to-port="0" />
<edge from-layer="220" from-port="1" to-layer="222" to-port="0" />
<edge from-layer="221" from-port="0" to-layer="222" to-port="1" />
<edge from-layer="222" from-port="2" to-layer="224" to-port="0" />
<edge from-layer="223" from-port="0" to-layer="224" to-port="1" />
<edge from-layer="224" from-port="2" to-layer="225" to-port="0" />
<edge from-layer="225" from-port="2" to-layer="226" to-port="0" />
<edge from-layer="226" from-port="1" to-layer="228" to-port="0" />
<edge from-layer="226" from-port="1" to-layer="241" to-port="1" />
<edge from-layer="227" from-port="0" to-layer="228" to-port="1" />
<edge from-layer="228" from-port="2" to-layer="230" to-port="0" />
<edge from-layer="229" from-port="0" to-layer="230" to-port="1" />
<edge from-layer="230" from-port="2" to-layer="231" to-port="0" />
<edge from-layer="231" from-port="1" to-layer="233" to-port="0" />
<edge from-layer="232" from-port="0" to-layer="233" to-port="1" />
<edge from-layer="233" from-port="2" to-layer="235" to-port="0" />
<edge from-layer="234" from-port="0" to-layer="235" to-port="1" />
<edge from-layer="235" from-port="2" to-layer="236" to-port="0" />
<edge from-layer="236" from-port="1" to-layer="238" to-port="0" />
<edge from-layer="237" from-port="0" to-layer="238" to-port="1" />
<edge from-layer="238" from-port="2" to-layer="240" to-port="0" />
<edge from-layer="239" from-port="0" to-layer="240" to-port="1" />
<edge from-layer="240" from-port="2" to-layer="241" to-port="0" />
<edge from-layer="241" from-port="2" to-layer="242" to-port="0" />
<edge from-layer="242" from-port="1" to-layer="243" to-port="0" />
<edge from-layer="243" from-port="1" to-layer="244" to-port="0" />
<edge from-layer="243" from-port="1" to-layer="259" to-port="0" />
<edge from-layer="244" from-port="1" to-layer="248" to-port="0" />
<edge from-layer="244" from-port="1" to-layer="255" to-port="0" />
<edge from-layer="245" from-port="0" to-layer="248" to-port="1" />
<edge from-layer="246" from-port="0" to-layer="248" to-port="2" />
<edge from-layer="247" from-port="0" to-layer="248" to-port="3" />
<edge from-layer="248" from-port="4" to-layer="253" to-port="0" />
<edge from-layer="249" from-port="1" to-layer="252" to-port="0" />
<edge from-layer="250" from-port="0" to-layer="252" to-port="1" />
<edge from-layer="251" from-port="0" to-layer="252" to-port="2" />
<edge from-layer="252" from-port="3" to-layer="253" to-port="1" />
<edge from-layer="253" from-port="2" to-layer="259" to-port="1" />
<edge from-layer="253" from-port="2" to-layer="254" to-port="0" />
<edge from-layer="254" from-port="1" to-layer="256" to-port="0" />
<edge from-layer="255" from-port="1" to-layer="256" to-port="1" />
<edge from-layer="256" from-port="2" to-layer="258" to-port="0" />
<edge from-layer="257" from-port="0" to-layer="258" to-port="1" />
<edge from-layer="258" from-port="2" to-layer="259" to-port="2" />
<edge from-layer="259" from-port="3" to-layer="260" to-port="1" />
<edge from-layer="260" from-port="2" to-layer="262" to-port="0" />
<edge from-layer="260" from-port="2" to-layer="334" to-port="0" />
<edge from-layer="261" from-port="0" to-layer="268" to-port="0" />
<edge from-layer="262" from-port="1" to-layer="313" to-port="0" />
<edge from-layer="262" from-port="1" to-layer="331" to-port="0" />
<edge from-layer="262" from-port="1" to-layer="279" to-port="0" />
<edge from-layer="262" from-port="1" to-layer="265" to-port="0" />
<edge from-layer="262" from-port="1" to-layer="301" to-port="0" />
<edge from-layer="262" from-port="1" to-layer="296" to-port="0" />
<edge from-layer="263" from-port="0" to-layer="265" to-port="1" />
<edge from-layer="264" from-port="0" to-layer="265" to-port="2" />
<edge from-layer="264" from-port="0" to-layer="313" to-port="2" />
<edge from-layer="265" from-port="3" to-layer="266" to-port="0" />
<edge from-layer="265" from-port="3" to-layer="285" to-port="0" />
<edge from-layer="266" from-port="1" to-layer="268" to-port="1" />
<edge from-layer="267" from-port="0" to-layer="268" to-port="2" />
<edge from-layer="268" from-port="3" to-layer="270" to-port="0" />
<edge from-layer="269" from-port="0" to-layer="270" to-port="1" />
<edge from-layer="270" from-port="2" to-layer="272" to-port="0" />
<edge from-layer="271" from-port="0" to-layer="272" to-port="1" />
<edge from-layer="272" from-port="2" to-layer="274" to-port="0" />
<edge from-layer="273" from-port="0" to-layer="274" to-port="1" />
<edge from-layer="274" from-port="2" to-layer="282" to-port="0" />
<edge from-layer="275" from-port="0" to-layer="281" to-port="0" />
<edge from-layer="276" from-port="0" to-layer="297" to-port="1" />
<edge from-layer="276" from-port="0" to-layer="314" to-port="0" />
<edge from-layer="276" from-port="0" to-layer="314" to-port="1" />
<edge from-layer="276" from-port="0" to-layer="314" to-port="2" />
<edge from-layer="276" from-port="0" to-layer="332" to-port="1" />
<edge from-layer="276" from-port="0" to-layer="332" to-port="2" />
<edge from-layer="276" from-port="0" to-layer="332" to-port="3" />
<edge from-layer="276" from-port="0" to-layer="297" to-port="3" />
<edge from-layer="276" from-port="0" to-layer="297" to-port="2" />
<edge from-layer="276" from-port="0" to-layer="280" to-port="2" />
<edge from-layer="276" from-port="0" to-layer="280" to-port="0" />
<edge from-layer="276" from-port="0" to-layer="280" to-port="1" />
<edge from-layer="277" from-port="0" to-layer="279" to-port="1" />
<edge from-layer="278" from-port="0" to-layer="301" to-port="2" />
<edge from-layer="278" from-port="0" to-layer="279" to-port="2" />
<edge from-layer="279" from-port="3" to-layer="280" to-port="3" />
<edge from-layer="280" from-port="4" to-layer="281" to-port="1" />
<edge from-layer="281" from-port="2" to-layer="282" to-port="1" />
<edge from-layer="282" from-port="2" to-layer="283" to-port="0" />
<edge from-layer="283" from-port="1" to-layer="287" to-port="0" />
<edge from-layer="284" from-port="0" to-layer="285" to-port="1" />
<edge from-layer="285" from-port="2" to-layer="286" to-port="0" />
<edge from-layer="286" from-port="1" to-layer="287" to-port="1" />
<edge from-layer="287" from-port="2" to-layer="289" to-port="0" />
<edge from-layer="288" from-port="0" to-layer="289" to-port="1" />
<edge from-layer="289" from-port="2" to-layer="291" to-port="0" />
<edge from-layer="290" from-port="0" to-layer="291" to-port="1" />
<edge from-layer="291" from-port="2" to-layer="293" to-port="0" />
<edge from-layer="292" from-port="0" to-layer="293" to-port="1" />
<edge from-layer="293" from-port="2" to-layer="298" to-port="0" />
<edge from-layer="294" from-port="0" to-layer="296" to-port="1" />
<edge from-layer="295" from-port="0" to-layer="331" to-port="2" />
<edge from-layer="295" from-port="0" to-layer="296" to-port="2" />
<edge from-layer="296" from-port="3" to-layer="297" to-port="0" />
<edge from-layer="297" from-port="4" to-layer="298" to-port="1" />
<edge from-layer="298" from-port="2" to-layer="334" to-port="1" />
<edge from-layer="299" from-port="0" to-layer="304" to-port="0" />
<edge from-layer="300" from-port="0" to-layer="301" to-port="1" />
<edge from-layer="301" from-port="3" to-layer="321" to-port="0" />
<edge from-layer="301" from-port="3" to-layer="302" to-port="0" />
<edge from-layer="302" from-port="1" to-layer="304" to-port="1" />
<edge from-layer="303" from-port="0" to-layer="304" to-port="2" />
<edge from-layer="304" from-port="3" to-layer="306" to-port="0" />
<edge from-layer="305" from-port="0" to-layer="306" to-port="1" />
<edge from-layer="306" from-port="2" to-layer="308" to-port="0" />
<edge from-layer="307" from-port="0" to-layer="308" to-port="1" />
<edge from-layer="308" from-port="2" to-layer="310" to-port="0" />
<edge from-layer="309" from-port="0" to-layer="310" to-port="1" />
<edge from-layer="310" from-port="2" to-layer="316" to-port="0" />
<edge from-layer="311" from-port="0" to-layer="315" to-port="0" />
<edge from-layer="312" from-port="0" to-layer="313" to-port="1" />
<edge from-layer="313" from-port="3" to-layer="314" to-port="3" />
<edge from-layer="314" from-port="4" to-layer="315" to-port="1" />
<edge from-layer="315" from-port="2" to-layer="316" to-port="1" />
<edge from-layer="316" from-port="2" to-layer="317" to-port="0" />
<edge from-layer="317" from-port="1" to-layer="319" to-port="0" />
<edge from-layer="318" from-port="0" to-layer="319" to-port="1" />
<edge from-layer="319" from-port="2" to-layer="323" to-port="0" />
<edge from-layer="320" from-port="0" to-layer="321" to-port="1" />
<edge from-layer="321" from-port="2" to-layer="322" to-port="0" />
<edge from-layer="322" from-port="1" to-layer="323" to-port="1" />
<edge from-layer="323" from-port="2" to-layer="325" to-port="0" />
<edge from-layer="324" from-port="0" to-layer="325" to-port="1" />
<edge from-layer="325" from-port="2" to-layer="327" to-port="0" />
<edge from-layer="326" from-port="0" to-layer="327" to-port="1" />
<edge from-layer="327" from-port="2" to-layer="329" to-port="0" />
<edge from-layer="328" from-port="0" to-layer="329" to-port="1" />
<edge from-layer="329" from-port="2" to-layer="333" to-port="0" />
<edge from-layer="330" from-port="0" to-layer="331" to-port="1" />
<edge from-layer="331" from-port="3" to-layer="332" to-port="0" />
<edge from-layer="332" from-port="4" to-layer="333" to-port="1" />
<edge from-layer="333" from-port="2" to-layer="334" to-port="2" />
<edge from-layer="334" from-port="3" to-layer="336" to-port="0" />
<edge from-layer="335" from-port="0" to-layer="336" to-port="1" />
<edge from-layer="336" from-port="2" to-layer="338" to-port="0" />
<edge from-layer="337" from-port="0" to-layer="338" to-port="1" />
<edge from-layer="338" from-port="2" to-layer="340" to-port="0" />
<edge from-layer="339" from-port="0" to-layer="340" to-port="1" />
<edge from-layer="340" from-port="2" to-layer="342" to-port="0" />
<edge from-layer="341" from-port="0" to-layer="342" to-port="1" />
<edge from-layer="342" from-port="2" to-layer="344" to-port="0" />
<edge from-layer="343" from-port="0" to-layer="344" to-port="1" />
<edge from-layer="344" from-port="2" to-layer="352" to-port="0" />
<edge from-layer="344" from-port="2" to-layer="346" to-port="0" />
<edge from-layer="345" from-port="0" to-layer="346" to-port="1" />
<edge from-layer="346" from-port="2" to-layer="348" to-port="0" />
<edge from-layer="347" from-port="0" to-layer="348" to-port="1" />
<edge from-layer="348" from-port="2" to-layer="350" to-port="0" />
<edge from-layer="349" from-port="0" to-layer="350" to-port="1" />
<edge from-layer="350" from-port="2" to-layer="353" to-port="0" />
<edge from-layer="351" from-port="0" to-layer="352" to-port="1" />
<edge from-layer="352" from-port="2" to-layer="353" to-port="1" />
<edge from-layer="353" from-port="2" to-layer="354" to-port="0" />
<edge from-layer="354" from-port="1" to-layer="356" to-port="0" />
<edge from-layer="355" from-port="0" to-layer="356" to-port="1" />
<edge from-layer="356" from-port="2" to-layer="358" to-port="0" />
<edge from-layer="356" from-port="2" to-layer="365" to-port="0" />
<edge from-layer="357" from-port="0" to-layer="358" to-port="1" />
<edge from-layer="358" from-port="2" to-layer="359" to-port="0" />
<edge from-layer="359" from-port="1" to-layer="362" to-port="0" />
<edge from-layer="360" from-port="0" to-layer="362" to-port="1" />
<edge from-layer="361" from-port="0" to-layer="362" to-port="2" />
<edge from-layer="362" from-port="3" to-layer="366" to-port="0" />
<edge from-layer="363" from-port="0" to-layer="365" to-port="1" />
<edge from-layer="364" from-port="0" to-layer="365" to-port="2" />
<edge from-layer="365" from-port="3" to-layer="366" to-port="1" />
<edge from-layer="366" from-port="2" to-layer="368" to-port="0" />
<edge from-layer="367" from-port="0" to-layer="368" to-port="1" />
<edge from-layer="368" from-port="2" to-layer="369" to-port="0" />
<edge from-layer="368" from-port="2" to-layer="382" to-port="0" />
<edge from-layer="369" from-port="1" to-layer="372" to-port="0" />
<edge from-layer="369" from-port="1" to-layer="378" to-port="0" />
<edge from-layer="370" from-port="0" to-layer="372" to-port="1" />
<edge from-layer="371" from-port="0" to-layer="372" to-port="2" />
<edge from-layer="372" from-port="3" to-layer="374" to-port="0" />
<edge from-layer="372" from-port="3" to-layer="386" to-port="0" />
<edge from-layer="373" from-port="0" to-layer="374" to-port="1" />
<edge from-layer="374" from-port="2" to-layer="381" to-port="0" />
<edge from-layer="375" from-port="0" to-layer="389" to-port="2" />
<edge from-layer="375" from-port="0" to-layer="389" to-port="3" />
<edge from-layer="375" from-port="0" to-layer="381" to-port="2" />
<edge from-layer="375" from-port="0" to-layer="381" to-port="1" />
<edge from-layer="376" from-port="0" to-layer="378" to-port="1" />
<edge from-layer="377" from-port="0" to-layer="378" to-port="2" />
<edge from-layer="378" from-port="3" to-layer="388" to-port="0" />
<edge from-layer="378" from-port="3" to-layer="380" to-port="0" />
<edge from-layer="379" from-port="0" to-layer="380" to-port="1" />
<edge from-layer="380" from-port="2" to-layer="381" to-port="3" />
<edge from-layer="381" from-port="4" to-layer="382" to-port="1" />
<edge from-layer="382" from-port="2" to-layer="384" to-port="0" />
<edge from-layer="383" from-port="0" to-layer="384" to-port="1" />
<edge from-layer="384" from-port="2" to-layer="390" to-port="0" />
<edge from-layer="385" from-port="0" to-layer="386" to-port="1" />
<edge from-layer="386" from-port="2" to-layer="389" to-port="0" />
<edge from-layer="387" from-port="0" to-layer="388" to-port="1" />
<edge from-layer="388" from-port="2" to-layer="389" to-port="1" />
<edge from-layer="389" from-port="4" to-layer="390" to-port="1" />
<edge from-layer="390" from-port="2" to-layer="392" to-port="0" />
<edge from-layer="391" from-port="0" to-layer="392" to-port="1" />
<edge from-layer="392" from-port="2" to-layer="393" to-port="0" />
<edge from-layer="392" from-port="2" to-layer="405" to-port="0" />
<edge from-layer="393" from-port="1" to-layer="397" to-port="0" />
<edge from-layer="393" from-port="1" to-layer="401" to-port="0" />
<edge from-layer="394" from-port="0" to-layer="397" to-port="1" />
<edge from-layer="395" from-port="0" to-layer="397" to-port="2" />
<edge from-layer="396" from-port="0" to-layer="397" to-port="3" />
<edge from-layer="397" from-port="4" to-layer="399" to-port="0" />
<edge from-layer="398" from-port="0" to-layer="399" to-port="1" />
<edge from-layer="399" from-port="2" to-layer="405" to-port="1" />
<edge from-layer="399" from-port="2" to-layer="400" to-port="0" />
<edge from-layer="400" from-port="1" to-layer="402" to-port="0" />
<edge from-layer="401" from-port="1" to-layer="402" to-port="1" />
<edge from-layer="402" from-port="2" to-layer="404" to-port="0" />
<edge from-layer="403" from-port="0" to-layer="404" to-port="1" />
<edge from-layer="404" from-port="2" to-layer="405" to-port="2" />
<edge from-layer="405" from-port="3" to-layer="409" to-port="0" />
<edge from-layer="405" from-port="3" to-layer="412" to-port="0" />
<edge from-layer="406" from-port="0" to-layer="409" to-port="1" />
<edge from-layer="407" from-port="0" to-layer="409" to-port="2" />
<edge from-layer="408" from-port="0" to-layer="409" to-port="3" />
<edge from-layer="409" from-port="4" to-layer="411" to-port="0" />
<edge from-layer="410" from-port="0" to-layer="411" to-port="1" />
<edge from-layer="411" from-port="2" to-layer="413" to-port="0" />
<edge from-layer="412" from-port="1" to-layer="413" to-port="1" />
<edge from-layer="413" from-port="2" to-layer="414" to-port="0" />
</edges>
<rt_info>
<MO_version value="2022.3.0-9052-9752fafe8eb-releases/2022/3" />
<Runtime_version value="2022.3.0-9052-9752fafe8eb-releases/2022/3" />
<conversion_parameters>
<framework value="onnx" />
<input_model value="DIR/model.onnx" />
<model_name value="model" />
<output_dir value="DIR" />
</conversion_parameters>
<legacy_frontend value="False" />
</rt_info>
</net>