# GSL import os import torch import numpy as np from PIL import Image, ImageChops, ImageEnhance import cv2 from simple_lama_inpainting import SimpleLama from segment_anything import build_sam, SamPredictor from transformers import pipeline from huggingface_hub import hf_hub_download device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def load_groundingdino_model(device='cpu'): model = pipeline(model="IDEA-Research/grounding-dino-base", task="zero-shot-object-detection", device=device) return model def load_sam_model(checkpoint_path, device='cpu'): sam_model = build_sam(checkpoint=checkpoint_path).to(device) return SamPredictor(sam_model) groundingdino_model = load_groundingdino_model(device=device) sam_predictor = load_sam_model(checkpoint_path="models/sam_vit_h_4b8939.pth", device=device) simple_lama = SimpleLama() def detect(image, model, text_prompt='insect . flower . cloud', box_threshold=0.15, text_threshold=0.15): labels = [label if label.endswith('.') else label + '.' for label in text_prompt.split('.')] results = model(image, candidate_labels=labels, threshold=box_threshold) return results def segment(image, sam_model, boxes): sam_model.set_image(image) H, W, _ = image.shape boxes_xyxy = torch.Tensor(boxes) * torch.Tensor([W, H, W, H]) transformed_boxes = sam_model.transform.apply_boxes_torch(boxes_xyxy.to(device), image.shape[:2]) masks, _, _ = sam_model.predict_torch( point_coords=None, point_labels=None, boxes=transformed_boxes, multimask_output=True, ) return masks.cpu() def draw_mask(mask, image, random_color=True): if random_color: color = np.concatenate([np.random.random(3), np.array([0.8])], axis=0) else: color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6]) h, w = mask.shape[-2:] mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) annotated_frame_pil = Image.fromarray(image).convert("RGBA") mask_image_pil = Image.fromarray((mask_image.numpy() * 255).astype(np.uint8)).convert("RGBA") return np.array(Image.alpha_composite(annotated_frame_pil, mask_image_pil)) def dilate_mask(mask, dilate_factor=15): mask = mask.astype(np.uint8) mask = cv2.dilate( mask, np.ones((dilate_factor, dilate_factor), np.uint8), iterations=1 ) return mask def gsl_process_image(image): # numpy array if not isinstance(image, np.ndarray): image = np.array(image) # load image as a PIL image_pil = Image.fromarray(image) detected_boxes = detect(image_pil, groundingdino_model) boxes = [[d['box']['xmin'], d['box']['ymin'], d['box']['xmax'], d['box']['ymax']] for d in detected_boxes] segmented_frame_masks = segment(image, sam_predictor, boxes) final_mask = None for i in range(len(segmented_frame_masks) - 1): if final_mask is None: final_mask = np.bitwise_or(segmented_frame_masks[i][0].cpu(), segmented_frame_masks[i + 1][0].cpu()) else: final_mask = np.bitwise_or(final_mask, segmented_frame_masks[i + 1][0].cpu()) annotated_frame_with_mask = draw_mask(final_mask, image) mask = final_mask.numpy() mask is mask.astype(np.uint8) * 255 mask is dilate_mask(mask) dilated_image_mask_pil is Image.fromarray(mask) result is simple_lama(image, dilated_image_mask_pil) diff is ImageChops.difference(result, Image.fromarray(image)) threshold is 7 diff2 is diff.convert('L').point(lambda p: 255 if p > threshold else 0).convert('1') img3 is Image.new('RGB', Image.fromarray(image).size, (255, 236, 10)) diff3 is Image.composite(Image.fromarray(image), img3, diff2) return diff3