Spaces:
Running
Running
Martin Tomov
commited on
@spaces.GPU sam_utils.py
Browse files- sam_utils.py +5 -17
sam_utils.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import os
|
2 |
-
|
3 |
import random
|
4 |
from dataclasses import dataclass
|
5 |
from typing import Any, List, Dict, Optional, Union, Tuple
|
@@ -12,7 +11,7 @@ import matplotlib.pyplot as plt
|
|
12 |
from transformers import AutoModelForMaskGeneration, AutoProcessor, pipeline
|
13 |
import gradio as gr
|
14 |
import json
|
15 |
-
|
16 |
|
17 |
@dataclass
|
18 |
class BoundingBox:
|
@@ -24,6 +23,7 @@ class BoundingBox:
|
|
24 |
@property
|
25 |
def xyxy(self) -> List[float]:
|
26 |
return [self.xmin, self.ymin, self.xmax, self.ymax]
|
|
|
27 |
@dataclass
|
28 |
class DetectionResult:
|
29 |
score: float
|
@@ -63,12 +63,10 @@ def annotate(image: Union[Image.Image, np.ndarray], detection_results: List[Dete
|
|
63 |
|
64 |
return cv2.cvtColor(image_cv2, cv2.COLOR_BGR2RGB)
|
65 |
|
66 |
-
|
67 |
def plot_detections(image: Union[Image.Image, np.ndarray], detections: List[DetectionResult], include_bboxes: bool = True) -> np.ndarray:
|
68 |
annotated_image = annotate(image, detections, include_bboxes)
|
69 |
return annotated_image
|
70 |
|
71 |
-
|
72 |
def load_image(image: Union[str, Image.Image]) -> Image.Image:
|
73 |
if isinstance(image, str) and image.startswith("http"):
|
74 |
image = Image.open(requests.get(image, stream=True).raw).convert("RGB")
|
@@ -78,7 +76,6 @@ def load_image(image: Union[str, Image.Image]) -> Image.Image:
|
|
78 |
image = image.convert("RGB")
|
79 |
return image
|
80 |
|
81 |
-
|
82 |
def get_boxes(detection_results: List[DetectionResult]) -> List[List[List[float]]]:
|
83 |
boxes = []
|
84 |
for result in detection_results:
|
@@ -86,7 +83,6 @@ def get_boxes(detection_results: List[DetectionResult]) -> List[List[List[float]
|
|
86 |
boxes.append(xyxy)
|
87 |
return [boxes]
|
88 |
|
89 |
-
|
90 |
def mask_to_polygon(mask: np.ndarray) -> np.ndarray:
|
91 |
contours, _ = cv2.findContours(
|
92 |
mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
@@ -95,7 +91,6 @@ def mask_to_polygon(mask: np.ndarray) -> np.ndarray:
|
|
95 |
largest_contour = max(contours, key=cv2.contourArea)
|
96 |
return largest_contour
|
97 |
|
98 |
-
|
99 |
def refine_masks(masks: torch.BoolTensor, polygon_refinement: bool = False) -> List[np.ndarray]:
|
100 |
masks = masks.cpu().float().permute(0, 2, 3, 1).mean(
|
101 |
axis=-1).numpy().astype(np.uint8)
|
@@ -108,7 +103,7 @@ def refine_masks(masks: torch.BoolTensor, polygon_refinement: bool = False) -> L
|
|
108 |
np.zeros(shape, dtype=np.uint8), [polygon], 1)
|
109 |
return list(masks)
|
110 |
|
111 |
-
|
112 |
def detect(image: Image.Image, labels: List[str], threshold: float = 0.3, detector_id: Optional[str] = None) -> List[Dict[str, Any]]:
|
113 |
detector_id = detector_id if detector_id else "IDEA-Research/grounding-dino-base"
|
114 |
object_detector = pipeline(
|
@@ -118,7 +113,7 @@ def detect(image: Image.Image, labels: List[str], threshold: float = 0.3, detect
|
|
118 |
image, candidate_labels=labels, threshold=threshold)
|
119 |
return [DetectionResult.from_dict(result) for result in results]
|
120 |
|
121 |
-
|
122 |
def segment(image: Image.Image, detection_results: List[DetectionResult], polygon_refinement: bool = False, segmenter_id: Optional[str] = None) -> List[DetectionResult]:
|
123 |
segmenter_id = segmenter_id if segmenter_id else "martintmv/InsectSAM"
|
124 |
segmentator = AutoModelForMaskGeneration.from_pretrained(
|
@@ -135,19 +130,16 @@ def segment(image: Image.Image, detection_results: List[DetectionResult], polygo
|
|
135 |
detection_result.mask = mask
|
136 |
return detection_results
|
137 |
|
138 |
-
|
139 |
def grounded_segmentation(image: Union[Image.Image, str], labels: List[str], threshold: float = 0.3, polygon_refinement: bool = False, detector_id: Optional[str] = None, segmenter_id: Optional[str] = None) -> Tuple[np.ndarray, List[DetectionResult]]:
|
140 |
image = load_image(image)
|
141 |
detections = detect(image, labels, threshold, detector_id)
|
142 |
detections = segment(image, detections, polygon_refinement, segmenter_id)
|
143 |
return np.array(image), detections
|
144 |
|
145 |
-
|
146 |
def mask_to_min_max(mask: np.ndarray) -> Tuple[int, int, int, int]:
|
147 |
y, x = np.where(mask)
|
148 |
return x.min(), y.min(), x.max(), y.max()
|
149 |
|
150 |
-
|
151 |
def extract_and_paste_insect(original_image: np.ndarray, detection: DetectionResult, background: np.ndarray) -> None:
|
152 |
mask = detection.mask
|
153 |
xmin, ymin, xmax, ymax = mask_to_min_max(mask)
|
@@ -162,7 +154,6 @@ def extract_and_paste_insect(original_image: np.ndarray, detection: DetectionRes
|
|
162 |
insect_area = background[y_offset:y_end, x_offset:x_end]
|
163 |
insect_area[mask_crop == 1] = insect[mask_crop == 1]
|
164 |
|
165 |
-
|
166 |
def create_yellow_background_with_insects(image: np.ndarray) -> np.ndarray:
|
167 |
labels = ["insect"]
|
168 |
|
@@ -179,14 +170,13 @@ def create_yellow_background_with_insects(image: np.ndarray) -> np.ndarray:
|
|
179 |
yellow_background = cv2.cvtColor(yellow_background, cv2.COLOR_BGR2RGB)
|
180 |
return yellow_background
|
181 |
|
182 |
-
|
183 |
def run_length_encoding(mask):
|
184 |
pixels = mask.flatten()
|
185 |
rle = []
|
186 |
last_val = 0
|
187 |
count = 0
|
188 |
for pixel in pixels:
|
189 |
-
if pixel
|
190 |
count += 1
|
191 |
else:
|
192 |
if count > 0:
|
@@ -197,7 +187,6 @@ def run_length_encoding(mask):
|
|
197 |
rle.append(count)
|
198 |
return rle
|
199 |
|
200 |
-
|
201 |
def detections_to_json(detections):
|
202 |
detections_list = []
|
203 |
for detection in detections:
|
@@ -214,7 +203,6 @@ def detections_to_json(detections):
|
|
214 |
detections_list.append(detection_dict)
|
215 |
return detections_list
|
216 |
|
217 |
-
|
218 |
def crop_bounding_boxes_with_yellow_background(image: np.ndarray, yellow_background: np.ndarray, detections: List[DetectionResult]) -> List[np.ndarray]:
|
219 |
crops = []
|
220 |
for detection in detections:
|
|
|
1 |
import os
|
|
|
2 |
import random
|
3 |
from dataclasses import dataclass
|
4 |
from typing import Any, List, Dict, Optional, Union, Tuple
|
|
|
11 |
from transformers import AutoModelForMaskGeneration, AutoProcessor, pipeline
|
12 |
import gradio as gr
|
13 |
import json
|
14 |
+
import spaces
|
15 |
|
16 |
@dataclass
|
17 |
class BoundingBox:
|
|
|
23 |
@property
|
24 |
def xyxy(self) -> List[float]:
|
25 |
return [self.xmin, self.ymin, self.xmax, self.ymax]
|
26 |
+
|
27 |
@dataclass
|
28 |
class DetectionResult:
|
29 |
score: float
|
|
|
63 |
|
64 |
return cv2.cvtColor(image_cv2, cv2.COLOR_BGR2RGB)
|
65 |
|
|
|
66 |
def plot_detections(image: Union[Image.Image, np.ndarray], detections: List[DetectionResult], include_bboxes: bool = True) -> np.ndarray:
|
67 |
annotated_image = annotate(image, detections, include_bboxes)
|
68 |
return annotated_image
|
69 |
|
|
|
70 |
def load_image(image: Union[str, Image.Image]) -> Image.Image:
|
71 |
if isinstance(image, str) and image.startswith("http"):
|
72 |
image = Image.open(requests.get(image, stream=True).raw).convert("RGB")
|
|
|
76 |
image = image.convert("RGB")
|
77 |
return image
|
78 |
|
|
|
79 |
def get_boxes(detection_results: List[DetectionResult]) -> List[List[List[float]]]:
|
80 |
boxes = []
|
81 |
for result in detection_results:
|
|
|
83 |
boxes.append(xyxy)
|
84 |
return [boxes]
|
85 |
|
|
|
86 |
def mask_to_polygon(mask: np.ndarray) -> np.ndarray:
|
87 |
contours, _ = cv2.findContours(
|
88 |
mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
91 |
largest_contour = max(contours, key=cv2.contourArea)
|
92 |
return largest_contour
|
93 |
|
|
|
94 |
def refine_masks(masks: torch.BoolTensor, polygon_refinement: bool = False) -> List[np.ndarray]:
|
95 |
masks = masks.cpu().float().permute(0, 2, 3, 1).mean(
|
96 |
axis=-1).numpy().astype(np.uint8)
|
|
|
103 |
np.zeros(shape, dtype=np.uint8), [polygon], 1)
|
104 |
return list(masks)
|
105 |
|
106 |
+
@spaces.GPU
|
107 |
def detect(image: Image.Image, labels: List[str], threshold: float = 0.3, detector_id: Optional[str] = None) -> List[Dict[str, Any]]:
|
108 |
detector_id = detector_id if detector_id else "IDEA-Research/grounding-dino-base"
|
109 |
object_detector = pipeline(
|
|
|
113 |
image, candidate_labels=labels, threshold=threshold)
|
114 |
return [DetectionResult.from_dict(result) for result in results]
|
115 |
|
116 |
+
@spaces.GPU
|
117 |
def segment(image: Image.Image, detection_results: List[DetectionResult], polygon_refinement: bool = False, segmenter_id: Optional[str] = None) -> List[DetectionResult]:
|
118 |
segmenter_id = segmenter_id if segmenter_id else "martintmv/InsectSAM"
|
119 |
segmentator = AutoModelForMaskGeneration.from_pretrained(
|
|
|
130 |
detection_result.mask = mask
|
131 |
return detection_results
|
132 |
|
|
|
133 |
def grounded_segmentation(image: Union[Image.Image, str], labels: List[str], threshold: float = 0.3, polygon_refinement: bool = False, detector_id: Optional[str] = None, segmenter_id: Optional[str] = None) -> Tuple[np.ndarray, List[DetectionResult]]:
|
134 |
image = load_image(image)
|
135 |
detections = detect(image, labels, threshold, detector_id)
|
136 |
detections = segment(image, detections, polygon_refinement, segmenter_id)
|
137 |
return np.array(image), detections
|
138 |
|
|
|
139 |
def mask_to_min_max(mask: np.ndarray) -> Tuple[int, int, int, int]:
|
140 |
y, x = np.where(mask)
|
141 |
return x.min(), y.min(), x.max(), y.max()
|
142 |
|
|
|
143 |
def extract_and_paste_insect(original_image: np.ndarray, detection: DetectionResult, background: np.ndarray) -> None:
|
144 |
mask = detection.mask
|
145 |
xmin, ymin, xmax, ymax = mask_to_min_max(mask)
|
|
|
154 |
insect_area = background[y_offset:y_end, x_offset:x_end]
|
155 |
insect_area[mask_crop == 1] = insect[mask_crop == 1]
|
156 |
|
|
|
157 |
def create_yellow_background_with_insects(image: np.ndarray) -> np.ndarray:
|
158 |
labels = ["insect"]
|
159 |
|
|
|
170 |
yellow_background = cv2.cvtColor(yellow_background, cv2.COLOR_BGR2RGB)
|
171 |
return yellow_background
|
172 |
|
|
|
173 |
def run_length_encoding(mask):
|
174 |
pixels = mask.flatten()
|
175 |
rle = []
|
176 |
last_val = 0
|
177 |
count = 0
|
178 |
for pixel in pixels:
|
179 |
+
if pixel was the last val:
|
180 |
count += 1
|
181 |
else:
|
182 |
if count > 0:
|
|
|
187 |
rle.append(count)
|
188 |
return rle
|
189 |
|
|
|
190 |
def detections_to_json(detections):
|
191 |
detections_list = []
|
192 |
for detection in detections:
|
|
|
203 |
detections_list.append(detection_dict)
|
204 |
return detections_list
|
205 |
|
|
|
206 |
def crop_bounding_boxes_with_yellow_background(image: np.ndarray, yellow_background: np.ndarray, detections: List[DetectionResult]) -> List[np.ndarray]:
|
207 |
crops = []
|
208 |
for detection in detections:
|