Spaces:
Running
Running
Martin Tomov
commited on
HF IDEA-Research/grounding-dino-base
Browse files- gsl_utils.py +20 -55
gsl_utils.py
CHANGED
@@ -1,57 +1,32 @@
|
|
1 |
-
# GSL
|
2 |
-
|
3 |
import os
|
4 |
import torch
|
5 |
import numpy as np
|
6 |
from PIL import Image, ImageChops, ImageEnhance
|
7 |
import cv2
|
8 |
from simple_lama_inpainting import SimpleLama
|
9 |
-
from
|
10 |
-
from GroundingDINO.groundingdino.util import box_ops
|
11 |
-
from GroundingDINO.groundingdino.util.slconfig import SLConfig
|
12 |
-
from GroundingDINO.groundingdino.util.utils import clean_state_dict
|
13 |
-
from GroundingDINO.groundingdino.util.inference import annotate, load_image, predict
|
14 |
from huggingface_hub import hf_hub_download
|
15 |
|
16 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
17 |
|
18 |
-
def
|
19 |
-
|
20 |
-
args = SLConfig.fromfile(cache_config_file)
|
21 |
-
args.device = device
|
22 |
-
model = build_model(args)
|
23 |
-
cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
|
24 |
-
checkpoint = torch.load(cache_file, map_location=device)
|
25 |
-
model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
|
26 |
-
model.eval()
|
27 |
return model
|
28 |
|
29 |
-
groundingdino_model =
|
30 |
-
|
31 |
-
filename="groundingdino_swinb_cogcoor.pth",
|
32 |
-
ckpt_config_filename="GroundingDINO_SwinB.cfg.py",
|
33 |
-
device=device
|
34 |
-
)
|
35 |
-
|
36 |
-
sam_predictor = SamPredictor(build_sam(checkpoint='sam_vit_h_4b8939.pth').to(device))
|
37 |
simple_lama = SimpleLama()
|
38 |
|
39 |
def detect(image, model, text_prompt='insect . flower . cloud', box_threshold=0.15, text_threshold=0.15):
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
caption=text_prompt,
|
44 |
-
box_threshold=box_threshold,
|
45 |
-
text_threshold=text_threshold
|
46 |
-
)
|
47 |
-
annotated_frame = annotate(image_source=image, boxes=boxes, logits=logits, phrases=phrases)
|
48 |
-
annotated_frame = annotated_frame[..., ::-1] # BGR to RGB
|
49 |
-
return annotated_frame, boxes, phrases
|
50 |
|
51 |
def segment(image, sam_model, boxes):
|
52 |
sam_model.set_image(image)
|
53 |
H, W, _ = image.shape
|
54 |
-
boxes_xyxy =
|
|
|
55 |
transformed_boxes = sam_model.transform.apply_boxes_torch(boxes_xyxy.to(device), image.shape[:2])
|
56 |
masks, _, _ = sam_model.predict_torch(
|
57 |
point_coords=None,
|
@@ -81,18 +56,12 @@ def dilate_mask(mask, dilate_factor=15):
|
|
81 |
)
|
82 |
return mask
|
83 |
|
84 |
-
def gsl_process_image(
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
annotated_frame, detected_boxes, phrases = detect(image, model=groundingdino_model)
|
90 |
-
indices = [i for i, s in enumerate(phrases) if 'insect' in s]
|
91 |
-
|
92 |
-
# Segment insects
|
93 |
-
segmented_frame_masks = segment(image_source, sam_predictor, detected_boxes[indices])
|
94 |
|
95 |
-
# Combine masks
|
96 |
final_mask = None
|
97 |
for i in range(len(segmented_frame_masks) - 1):
|
98 |
if final_mask is None:
|
@@ -100,23 +69,19 @@ def gsl_process_image(local_image_path):
|
|
100 |
else:
|
101 |
final_mask = np.bitwise_or(final_mask, segmented_frame_masks[i + 1][0].cpu())
|
102 |
|
103 |
-
|
104 |
-
annotated_frame_with_mask = draw_mask(final_mask, image_source)
|
105 |
|
106 |
-
# Dilate mask
|
107 |
mask = final_mask.numpy()
|
108 |
mask = mask.astype(np.uint8) * 255
|
109 |
mask = dilate_mask(mask)
|
110 |
dilated_image_mask_pil = Image.fromarray(mask)
|
111 |
|
112 |
-
|
113 |
-
result = simple_lama(image_source, dilated_image_mask_pil)
|
114 |
|
115 |
-
|
116 |
-
diff = ImageChops.difference(result, Image.fromarray(image_source))
|
117 |
threshold = 7
|
118 |
diff2 = diff.convert('L').point(lambda p: 255 if p > threshold else 0).convert('1')
|
119 |
-
img3 = Image.new('RGB', Image.fromarray(
|
120 |
-
diff3 = Image.composite(Image.fromarray(
|
121 |
|
122 |
return diff3
|
|
|
|
|
|
|
1 |
import os
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
from PIL import Image, ImageChops, ImageEnhance
|
5 |
import cv2
|
6 |
from simple_lama_inpainting import SimpleLama
|
7 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
8 |
from huggingface_hub import hf_hub_download
|
9 |
|
10 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
11 |
|
12 |
+
def load_groundingdino_model(device='cpu'):
|
13 |
+
model = pipeline(model="IDEA-Research/grounding-dino-base", task="zero-shot-object-detection", device=device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
return model
|
15 |
|
16 |
+
groundingdino_model = load_groundingdino_model(device=device)
|
17 |
+
sam_predictor = None
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
simple_lama = SimpleLama()
|
19 |
|
20 |
def detect(image, model, text_prompt='insect . flower . cloud', box_threshold=0.15, text_threshold=0.15):
|
21 |
+
labels = [label if label.endswith('.') else label + '.' for label in text_prompt.split('.')]
|
22 |
+
results = model(image, candidate_labels=labels, threshold=box_threshold)
|
23 |
+
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
def segment(image, sam_model, boxes):
|
26 |
sam_model.set_image(image)
|
27 |
H, W, _ = image.shape
|
28 |
+
boxes_xyxy = torch.Tensor(boxes) * torch.Tensor([W, H, W, H])
|
29 |
+
|
30 |
transformed_boxes = sam_model.transform.apply_boxes_torch(boxes_xyxy.to(device), image.shape[:2])
|
31 |
masks, _, _ = sam_model.predict_torch(
|
32 |
point_coords=None,
|
|
|
56 |
)
|
57 |
return mask
|
58 |
|
59 |
+
def gsl_process_image(image):
|
60 |
+
image_source = Image.fromarray(image)
|
61 |
+
detected_boxes = detect(image_source, groundingdino_model)
|
62 |
+
boxes = [[d['box']['xmin'], d['box']['ymin'], d['box']['xmax'], d['box']['ymax']] for d in detected_boxes]
|
63 |
+
segmented_frame_masks = segment(image, sam_predictor, boxes)
|
|
|
|
|
|
|
|
|
|
|
64 |
|
|
|
65 |
final_mask = None
|
66 |
for i in range(len(segmented_frame_masks) - 1):
|
67 |
if final_mask is None:
|
|
|
69 |
else:
|
70 |
final_mask = np.bitwise_or(final_mask, segmented_frame_masks[i + 1][0].cpu())
|
71 |
|
72 |
+
annotated_frame_with_mask = draw_mask(final_mask, image)
|
|
|
73 |
|
|
|
74 |
mask = final_mask.numpy()
|
75 |
mask = mask.astype(np.uint8) * 255
|
76 |
mask = dilate_mask(mask)
|
77 |
dilated_image_mask_pil = Image.fromarray(mask)
|
78 |
|
79 |
+
result = simple_lama(image, dilated_image_mask_pil)
|
|
|
80 |
|
81 |
+
diff = ImageChops.difference(result, Image.fromarray(image))
|
|
|
82 |
threshold = 7
|
83 |
diff2 = diff.convert('L').point(lambda p: 255 if p > threshold else 0).convert('1')
|
84 |
+
img3 = Image.new('RGB', Image.fromarray(image).size, (255, 236, 10))
|
85 |
+
diff3 = Image.composite(Image.fromarray(image), img3, diff2)
|
86 |
|
87 |
return diff3
|