import spaces import gradio as gr import json import torch import wavio from tqdm import tqdm from huggingface_hub import snapshot_download from models import AudioDiffusion, DDPMScheduler from audioldm.audio.stft import TacotronSTFT from audioldm.variational_autoencoder import AutoencoderKL from pydub import AudioSegment from gradio import Markdown import torch #from diffusers.models.autoencoder_kl import AutoencoderKL from diffusers.models.unet_2d_condition import UNet2DConditionModel from diffusers import DiffusionPipeline,AudioPipelineOutput from transformers import CLIPTextModel, T5EncoderModel, AutoModel, T5Tokenizer, T5TokenizerFast from typing import Union from diffusers.utils.torch_utils import randn_tensor from tqdm import tqdm class Tango2Pipeline(DiffusionPipeline): def __init__( self, vae: AutoencoderKL, text_encoder: T5EncoderModel, tokenizer: Union[T5Tokenizer, T5TokenizerFast], unet: UNet2DConditionModel, scheduler: DDPMScheduler ): super().__init__() self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler ) def _encode_prompt(self, prompt): device = self.text_encoder.device batch = self.tokenizer( prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt" ) input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) encoder_hidden_states = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask )[0] boolean_encoder_mask = (attention_mask == 1).to(device) return encoder_hidden_states, boolean_encoder_mask def _encode_text_classifier_free(self, prompt, num_samples_per_prompt): device = self.text_encoder.device batch = self.tokenizer( prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt" ) input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) with torch.no_grad(): prompt_embeds = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask )[0] prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0) # get unconditional embeddings for classifier free guidance uncond_tokens = [""] * len(prompt) max_length = prompt_embeds.shape[1] uncond_batch = self.tokenizer( uncond_tokens, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt", ) uncond_input_ids = uncond_batch.input_ids.to(device) uncond_attention_mask = uncond_batch.attention_mask.to(device) with torch.no_grad(): negative_prompt_embeds = self.text_encoder( input_ids=uncond_input_ids, attention_mask=uncond_attention_mask )[0] negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0) # For classifier free guidance, we need to do two forward passes. # We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) prompt_mask = torch.cat([uncond_attention_mask, attention_mask]) boolean_prompt_mask = (prompt_mask == 1).to(device) return prompt_embeds, boolean_prompt_mask def prepare_latents(self, batch_size, inference_scheduler, num_channels_latents, dtype, device): shape = (batch_size, num_channels_latents, 256, 16) latents = randn_tensor(shape, generator=None, device=device, dtype=dtype) # scale the initial noise by the standard deviation required by the scheduler latents = latents * inference_scheduler.init_noise_sigma return latents @torch.no_grad() def inference(self, prompt, inference_scheduler, num_steps=20, guidance_scale=3, num_samples_per_prompt=1, disable_progress=True): device = self.text_encoder.device classifier_free_guidance = guidance_scale > 1.0 batch_size = len(prompt) * num_samples_per_prompt if classifier_free_guidance: prompt_embeds, boolean_prompt_mask = self._encode_text_classifier_free(prompt, num_samples_per_prompt) else: prompt_embeds, boolean_prompt_mask = self._encode_text(prompt) prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) boolean_prompt_mask = boolean_prompt_mask.repeat_interleave(num_samples_per_prompt, 0) inference_scheduler.set_timesteps(num_steps, device=device) timesteps = inference_scheduler.timesteps num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents(batch_size, inference_scheduler, num_channels_latents, prompt_embeds.dtype, device) num_warmup_steps = len(timesteps) - num_steps * inference_scheduler.order progress_bar = tqdm(range(num_steps), disable=disable_progress) for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if classifier_free_guidance else latents latent_model_input = inference_scheduler.scale_model_input(latent_model_input, t) noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, encoder_attention_mask=boolean_prompt_mask ).sample # perform guidance if classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = inference_scheduler.step(noise_pred, t, latents).prev_sample # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % inference_scheduler.order == 0): progress_bar.update(1) return latents @torch.no_grad() def __call__(self, prompt, steps=100, guidance=3, samples=1, disable_progress=True): """ Genrate audio for a single prompt string. """ with torch.no_grad(): latents = self.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress=disable_progress) mel = self.vae.decode_first_stage(latents) wave = self.vae.decode_to_waveform(mel) return AudioPipelineOutput(audios=wave) # Automatic device detection if torch.cuda.is_available(): device_type = "cuda" device_selection = "cuda:0" else: device_type = "cpu" device_selection = "cpu" class Tango: def __init__(self, name="declare-lab/tango2", device=device_selection): path = snapshot_download(repo_id=name) vae_config = json.load(open("{}/vae_config.json".format(path))) stft_config = json.load(open("{}/stft_config.json".format(path))) main_config = json.load(open("{}/main_config.json".format(path))) self.vae = AutoencoderKL(**vae_config).to(device) self.stft = TacotronSTFT(**stft_config).to(device) self.model = AudioDiffusion(**main_config).to(device) vae_weights = torch.load("{}/pytorch_model_vae.bin".format(path), map_location=device) stft_weights = torch.load("{}/pytorch_model_stft.bin".format(path), map_location=device) main_weights = torch.load("{}/pytorch_model_main.bin".format(path), map_location=device) self.vae.load_state_dict(vae_weights) self.stft.load_state_dict(stft_weights) self.model.load_state_dict(main_weights) print ("Successfully loaded checkpoint from:", name) self.vae.eval() self.stft.eval() self.model.eval() self.scheduler = DDPMScheduler.from_pretrained(main_config["scheduler_name"], subfolder="scheduler") def chunks(self, lst, n): """ Yield successive n-sized chunks from a list. """ for i in range(0, len(lst), n): yield lst[i:i + n] def generate(self, prompt, steps=100, guidance=3, samples=1, disable_progress=True): """ Genrate audio for a single prompt string. """ with torch.no_grad(): latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress=disable_progress) mel = self.vae.decode_first_stage(latents) wave = self.vae.decode_to_waveform(mel) return wave[0] def generate_for_batch(self, prompts, steps=200, guidance=3, samples=1, batch_size=8, disable_progress=True): """ Genrate audio for a list of prompt strings. """ outputs = [] for k in tqdm(range(0, len(prompts), batch_size)): batch = prompts[k: k+batch_size] with torch.no_grad(): latents = self.model.inference(batch, self.scheduler, steps, guidance, samples, disable_progress=disable_progress) mel = self.vae.decode_first_stage(latents) wave = self.vae.decode_to_waveform(mel) outputs += [item for item in wave] if samples == 1: return outputs else: return list(self.chunks(outputs, samples)) # Initialize TANGO tango = Tango(device="cpu") tango.vae.to(device_type) tango.stft.to(device_type) tango.model.to(device_type) pipe = Tango2Pipeline(vae=tango.vae, text_encoder=tango.model.text_encoder, tokenizer=tango.model.tokenizer, unet=tango.model.unet, scheduler=tango.scheduler ) @spaces.GPU(duration=60) def gradio_generate(prompt, output_format, steps, guidance): output_wave = pipe(prompt,steps,guidance) ## Using pipeliine automatically uses flash attention for torch2.0 above #output_wave = tango.generate(prompt, steps, guidance) # output_filename = f"{prompt.replace(' ', '_')}_{steps}_{guidance}"[:250] + ".wav" output_wave = output_wave.audios[0] output_filename = "temp.wav" wavio.write(output_filename, output_wave, rate=16000, sampwidth=2) if (output_format == "mp3"): AudioSegment.from_wav("temp.wav").export("temp.mp3", format = "mp3") output_filename = "temp.mp3" return output_filename # Gradio input and output components input_text = gr.Textbox(lines=2, label="Prompt") output_format = gr.Radio(label = "Output format", info = "The file you can dowload", choices = ["mp3", "wav"], value = "wav") output_audio = gr.Audio(label="Generated Audio", type="filepath") denoising_steps = gr.Slider(minimum=100, maximum=200, value=100, step=1, label="Steps", interactive=True) guidance_scale = gr.Slider(minimum=1, maximum=10, value=3, step=0.1, label="Guidance Scale", interactive=True) css = """ footer { visibility: hidden; } """ # Gradio interface gr_interface = gr.Interface( fn=gradio_generate, inputs=[input_text, output_format, denoising_steps, guidance_scale], outputs=[output_audio], title="SoundAI by tango", theme="Yntec/HaleyCH_Theme_Orange", css=css, allow_flagging=False, examples=[ ["Quiet whispered conversation gradually fading into distant jet engine roar diminishing into silence"], ["Clear sound of bicycle tires crunching on loose gravel and dirt, followed by deep male laughter echoing"], ["Multiple ducks quacking loudly with splashing water and piercing wild animal shriek in background"], ["Powerful ocean waves crashing and receding on sandy beach with distant seagulls"], ["Gentle female voice cooing and baby responding with happy gurgles and giggles"], ["Clear male voice speaking, sharp popping sound, followed by genuine group laughter"], ["Stream of water hitting empty ceramic cup, pitch rising as cup fills up"], ["Massive crowd erupting in thunderous applause and excited cheering"], ["Deep rolling thunder with bright lightning strikes crackling through sky"], ["Aggressive dog barking and distressed cat meowing as racing car roars past at high speed"], ["Peaceful stream bubbling and birds singing, interrupted by sudden explosive gunshot"], ["Man speaking outdoors, goat bleating loudly, metal gate scraping closed, ducks quacking frantically, wind howling into microphone"], ["Series of loud aggressive dog barks echoing"], ["Multiple distinct cat meows at different pitches"], ["Rhythmic wooden table tapping overlaid with steady water pouring sound"], ["Sustained crowd applause with camera clicks and amplified male announcer voice"], ["Two sharp gunshots followed by panicked birds taking flight with rapid wing flaps"], ["Melodic human whistling harmonizing with natural birdsong"], ["Deep rhythmic snoring with clear breathing patterns"], ["Multiple racing engines revving and accelerating with sharp whistle piercing through"], ["Massive stadium crowd cheering as thunder crashes and lightning strikes"], ["Heavy helicopter blades chopping through air with engine and wind noise"], ["Dog barking excitedly and man shouting as race car engine roars past"] ], cache_examples="lazy", # Turn on to cache. ) # Launch Gradio app gr_interface.queue(10).launch()