File size: 21,125 Bytes
cd36062
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import importlib
import math
import re
import traceback
from functools import partial
from pathlib import Path

import gradio as gr
import psutil
import torch
from transformers import is_torch_xpu_available

from modules import loaders, shared, ui, utils
from modules.logging_colors import logger
from modules.LoRA import add_lora_to_model
from modules.models import load_model, unload_model
from modules.models_settings import (
    apply_model_settings_to_state,
    get_model_metadata,
    save_model_settings,
    update_model_parameters
)
from modules.utils import gradio


def create_ui():
    mu = shared.args.multi_user

    # Finding the default values for the GPU and CPU memories
    total_mem = []
    if is_torch_xpu_available():
        for i in range(torch.xpu.device_count()):
            total_mem.append(math.floor(torch.xpu.get_device_properties(i).total_memory / (1024 * 1024)))
    else:
        for i in range(torch.cuda.device_count()):
            total_mem.append(math.floor(torch.cuda.get_device_properties(i).total_memory / (1024 * 1024)))

    default_gpu_mem = []
    if shared.args.gpu_memory is not None and len(shared.args.gpu_memory) > 0:
        for i in shared.args.gpu_memory:
            if 'mib' in i.lower():
                default_gpu_mem.append(int(re.sub('[a-zA-Z ]', '', i)))
            else:
                default_gpu_mem.append(int(re.sub('[a-zA-Z ]', '', i)) * 1000)

    while len(default_gpu_mem) < len(total_mem):
        default_gpu_mem.append(0)

    total_cpu_mem = math.floor(psutil.virtual_memory().total / (1024 * 1024))
    if shared.args.cpu_memory is not None:
        default_cpu_mem = re.sub('[a-zA-Z ]', '', shared.args.cpu_memory)
    else:
        default_cpu_mem = 0

    with gr.Tab("Model", elem_id="model-tab"):
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    with gr.Column():
                        with gr.Row():
                            shared.gradio['model_menu'] = gr.Dropdown(choices=utils.get_available_models(), value=shared.model_name, label='Model', elem_classes='slim-dropdown', interactive=not mu)
                            ui.create_refresh_button(shared.gradio['model_menu'], lambda: None, lambda: {'choices': utils.get_available_models()}, 'refresh-button', interactive=not mu)
                            shared.gradio['load_model'] = gr.Button("Load", visible=not shared.settings['autoload_model'], elem_classes='refresh-button', interactive=not mu)
                            shared.gradio['unload_model'] = gr.Button("Unload", elem_classes='refresh-button', interactive=not mu)
                            shared.gradio['reload_model'] = gr.Button("Reload", elem_classes='refresh-button', interactive=not mu)
                            shared.gradio['save_model_settings'] = gr.Button("Save settings", elem_classes='refresh-button', interactive=not mu)

                    with gr.Column():
                        with gr.Row():
                            shared.gradio['lora_menu'] = gr.Dropdown(multiselect=True, choices=utils.get_available_loras(), value=shared.lora_names, label='LoRA(s)', elem_classes='slim-dropdown', interactive=not mu)
                            ui.create_refresh_button(shared.gradio['lora_menu'], lambda: None, lambda: {'choices': utils.get_available_loras(), 'value': shared.lora_names}, 'refresh-button', interactive=not mu)
                            shared.gradio['lora_menu_apply'] = gr.Button(value='Apply LoRAs', elem_classes='refresh-button', interactive=not mu)

        with gr.Row():
            with gr.Column():
                shared.gradio['loader'] = gr.Dropdown(label="Model loader", choices=loaders.loaders_and_params.keys(), value=None)
                with gr.Box():
                    with gr.Row():
                        with gr.Column():
                            for i in range(len(total_mem)):
                                shared.gradio[f'gpu_memory_{i}'] = gr.Slider(label=f"gpu-memory in MiB for device :{i}", maximum=total_mem[i], value=default_gpu_mem[i])

                            shared.gradio['cpu_memory'] = gr.Slider(label="cpu-memory in MiB", maximum=total_cpu_mem, value=default_cpu_mem)
                            shared.gradio['transformers_info'] = gr.Markdown('load-in-4bit params:')
                            shared.gradio['compute_dtype'] = gr.Dropdown(label="compute_dtype", choices=["bfloat16", "float16", "float32"], value=shared.args.compute_dtype)
                            shared.gradio['quant_type'] = gr.Dropdown(label="quant_type", choices=["nf4", "fp4"], value=shared.args.quant_type)

                            shared.gradio['n_gpu_layers'] = gr.Slider(label="n-gpu-layers", minimum=0, maximum=128, value=shared.args.n_gpu_layers)
                            shared.gradio['n_ctx'] = gr.Slider(minimum=0, maximum=shared.settings['truncation_length_max'], step=256, label="n_ctx", value=shared.args.n_ctx, info='Context length. Try lowering this if you run out of memory while loading the model.')
                            shared.gradio['threads'] = gr.Slider(label="threads", minimum=0, step=1, maximum=32, value=shared.args.threads)
                            shared.gradio['threads_batch'] = gr.Slider(label="threads_batch", minimum=0, step=1, maximum=32, value=shared.args.threads_batch)
                            shared.gradio['n_batch'] = gr.Slider(label="n_batch", minimum=1, maximum=2048, value=shared.args.n_batch)

                            shared.gradio['wbits'] = gr.Dropdown(label="wbits", choices=["None", 1, 2, 3, 4, 8], value=shared.args.wbits if shared.args.wbits > 0 else "None")
                            shared.gradio['groupsize'] = gr.Dropdown(label="groupsize", choices=["None", 32, 64, 128, 1024], value=shared.args.groupsize if shared.args.groupsize > 0 else "None")
                            shared.gradio['model_type'] = gr.Dropdown(label="model_type", choices=["None"], value=shared.args.model_type or "None")
                            shared.gradio['pre_layer'] = gr.Slider(label="pre_layer", minimum=0, maximum=100, value=shared.args.pre_layer[0] if shared.args.pre_layer is not None else 0)
                            shared.gradio['autogptq_info'] = gr.Markdown('* ExLlama_HF is recommended over AutoGPTQ for models derived from Llama.')
                            shared.gradio['gpu_split'] = gr.Textbox(label='gpu-split', info='Comma-separated list of VRAM (in GB) to use per GPU. Example: 20,7,7')
                            shared.gradio['max_seq_len'] = gr.Slider(label='max_seq_len', minimum=0, maximum=shared.settings['truncation_length_max'], step=256, info='Context length. Try lowering this if you run out of memory while loading the model.', value=shared.args.max_seq_len)
                            shared.gradio['alpha_value'] = gr.Slider(label='alpha_value', minimum=1, maximum=8, step=0.05, info='Positional embeddings alpha factor for NTK RoPE scaling. Recommended values (NTKv1): 1.75 for 1.5x context, 2.5 for 2x context. Use either this or compress_pos_emb, not both.', value=shared.args.alpha_value)
                            shared.gradio['rope_freq_base'] = gr.Slider(label='rope_freq_base', minimum=0, maximum=1000000, step=1000, info='If greater than 0, will be used instead of alpha_value. Those two are related by rope_freq_base = 10000 * alpha_value ^ (64 / 63)', value=shared.args.rope_freq_base)
                            shared.gradio['compress_pos_emb'] = gr.Slider(label='compress_pos_emb', minimum=1, maximum=8, step=1, info='Positional embeddings compression factor. Should be set to (context length) / (model\'s original context length). Equal to 1/rope_freq_scale.', value=shared.args.compress_pos_emb)

                        with gr.Column():
                            shared.gradio['triton'] = gr.Checkbox(label="triton", value=shared.args.triton)
                            shared.gradio['no_inject_fused_attention'] = gr.Checkbox(label="no_inject_fused_attention", value=shared.args.no_inject_fused_attention, info='Disable fused attention. Fused attention improves inference performance but uses more VRAM. Fuses layers for AutoAWQ. Disable if running low on VRAM.')
                            shared.gradio['no_inject_fused_mlp'] = gr.Checkbox(label="no_inject_fused_mlp", value=shared.args.no_inject_fused_mlp, info='Affects Triton only. Disable fused MLP. Fused MLP improves performance but uses more VRAM. Disable if running low on VRAM.')
                            shared.gradio['no_use_cuda_fp16'] = gr.Checkbox(label="no_use_cuda_fp16", value=shared.args.no_use_cuda_fp16, info='This can make models faster on some systems.')
                            shared.gradio['desc_act'] = gr.Checkbox(label="desc_act", value=shared.args.desc_act, info='\'desc_act\', \'wbits\', and \'groupsize\' are used for old models without a quantize_config.json.')
                            shared.gradio['no_mul_mat_q'] = gr.Checkbox(label="no_mul_mat_q", value=shared.args.no_mul_mat_q, info='Disable the mulmat kernels.')
                            shared.gradio['no_mmap'] = gr.Checkbox(label="no-mmap", value=shared.args.no_mmap)
                            shared.gradio['mlock'] = gr.Checkbox(label="mlock", value=shared.args.mlock)
                            shared.gradio['numa'] = gr.Checkbox(label="numa", value=shared.args.numa, info='NUMA support can help on some systems with non-uniform memory access.')
                            shared.gradio['cpu'] = gr.Checkbox(label="cpu", value=shared.args.cpu)
                            shared.gradio['load_in_8bit'] = gr.Checkbox(label="load-in-8bit", value=shared.args.load_in_8bit)
                            shared.gradio['bf16'] = gr.Checkbox(label="bf16", value=shared.args.bf16)
                            shared.gradio['auto_devices'] = gr.Checkbox(label="auto-devices", value=shared.args.auto_devices)
                            shared.gradio['disk'] = gr.Checkbox(label="disk", value=shared.args.disk)
                            shared.gradio['load_in_4bit'] = gr.Checkbox(label="load-in-4bit", value=shared.args.load_in_4bit)
                            shared.gradio['use_double_quant'] = gr.Checkbox(label="use_double_quant", value=shared.args.use_double_quant)
                            shared.gradio['tensor_split'] = gr.Textbox(label='tensor_split', info='Split the model across multiple GPUs, comma-separated list of proportions, e.g. 18,17')
                            shared.gradio['trust_remote_code'] = gr.Checkbox(label="trust-remote-code", value=shared.args.trust_remote_code, info='To enable this option, start the web UI with the --trust-remote-code flag. It is necessary for some models.', interactive=shared.args.trust_remote_code)
                            shared.gradio['cfg_cache'] = gr.Checkbox(label="cfg-cache", value=shared.args.cfg_cache, info='Create an additional cache for CFG negative prompts.')
                            shared.gradio['logits_all'] = gr.Checkbox(label="logits_all", value=shared.args.logits_all, info='Needs to be set for perplexity evaluation to work. Otherwise, ignore it, as it makes prompt processing slower.')
                            shared.gradio['use_flash_attention_2'] = gr.Checkbox(label="use_flash_attention_2", value=shared.args.use_flash_attention_2, info='Set use_flash_attention_2=True while loading the model.')
                            shared.gradio['disable_exllama'] = gr.Checkbox(label="disable_exllama", value=shared.args.disable_exllama, info='Disable ExLlama kernel.')
                            shared.gradio['no_flash_attn'] = gr.Checkbox(label="no_flash_attn", value=shared.args.no_flash_attn, info='Force flash-attention to not be used.')
                            shared.gradio['cache_8bit'] = gr.Checkbox(label="cache_8bit", value=shared.args.cache_8bit, info='Use 8-bit cache to save VRAM.')
                            shared.gradio['no_use_fast'] = gr.Checkbox(label="no_use_fast", value=shared.args.no_use_fast, info='Set use_fast=False while loading the tokenizer.')
                            shared.gradio['gptq_for_llama_info'] = gr.Markdown('Legacy loader for compatibility with older GPUs. ExLlama_HF or AutoGPTQ are preferred for GPTQ models when supported.')
                            shared.gradio['exllama_info'] = gr.Markdown("ExLlama_HF is recommended over ExLlama for better integration with extensions and more consistent sampling behavior across loaders.")
                            shared.gradio['exllamav2_info'] = gr.Markdown("ExLlamav2_HF is recommended over ExLlamav2 for better integration with extensions and more consistent sampling behavior across loaders.")
                            shared.gradio['llamacpp_HF_info'] = gr.Markdown('llamacpp_HF loads llama.cpp as a Transformers model. To use it, you need to download a tokenizer.\n\nOption 1: download `oobabooga/llama-tokenizer` under "Download model or LoRA". That\'s a default Llama tokenizer.\n\nOption 2: place your .gguf in a subfolder of models/ along with these 3 files: tokenizer.model, tokenizer_config.json, and special_tokens_map.json. This takes precedence over Option 1.')

            with gr.Column():
                with gr.Row():
                    shared.gradio['autoload_model'] = gr.Checkbox(value=shared.settings['autoload_model'], label='Autoload the model', info='Whether to load the model as soon as it is selected in the Model dropdown.', interactive=not mu)

                shared.gradio['custom_model_menu'] = gr.Textbox(label="Download model or LoRA", info="Enter the Hugging Face username/model path, for instance: facebook/galactica-125m. To specify a branch, add it at the end after a \":\" character like this: facebook/galactica-125m:main. To download a single file, enter its name in the second box.", interactive=not mu)
                shared.gradio['download_specific_file'] = gr.Textbox(placeholder="File name (for GGUF models)", show_label=False, max_lines=1, interactive=not mu)
                with gr.Row():
                    shared.gradio['download_model_button'] = gr.Button("Download", variant='primary', interactive=not mu)
                    shared.gradio['get_file_list'] = gr.Button("Get file list", interactive=not mu)

                with gr.Row():
                    shared.gradio['model_status'] = gr.Markdown('No model is loaded' if shared.model_name == 'None' else 'Ready')


def create_event_handlers():
    shared.gradio['loader'].change(
        loaders.make_loader_params_visible, gradio('loader'), gradio(loaders.get_all_params())).then(
        lambda value: gr.update(choices=loaders.get_model_types(value)), gradio('loader'), gradio('model_type'))

    # In this event handler, the interface state is read and updated
    # with the model defaults (if any), and then the model is loaded
    # unless "autoload_model" is unchecked
    shared.gradio['model_menu'].change(
        ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
        apply_model_settings_to_state, gradio('model_menu', 'interface_state'), gradio('interface_state')).then(
        ui.apply_interface_values, gradio('interface_state'), gradio(ui.list_interface_input_elements()), show_progress=False).then(
        update_model_parameters, gradio('interface_state'), None).then(
        load_model_wrapper, gradio('model_menu', 'loader', 'autoload_model'), gradio('model_status'), show_progress=False).success(
        update_truncation_length, gradio('truncation_length', 'interface_state'), gradio('truncation_length')).then(
        lambda x: x, gradio('loader'), gradio('filter_by_loader'))

    shared.gradio['load_model'].click(
        ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
        update_model_parameters, gradio('interface_state'), None).then(
        partial(load_model_wrapper, autoload=True), gradio('model_menu', 'loader'), gradio('model_status'), show_progress=False).success(
        update_truncation_length, gradio('truncation_length', 'interface_state'), gradio('truncation_length')).then(
        lambda x: x, gradio('loader'), gradio('filter_by_loader'))

    shared.gradio['reload_model'].click(
        unload_model, None, None).then(
        ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
        update_model_parameters, gradio('interface_state'), None).then(
        partial(load_model_wrapper, autoload=True), gradio('model_menu', 'loader'), gradio('model_status'), show_progress=False).success(
        update_truncation_length, gradio('truncation_length', 'interface_state'), gradio('truncation_length')).then(
        lambda x: x, gradio('loader'), gradio('filter_by_loader'))

    shared.gradio['unload_model'].click(
        unload_model, None, None).then(
        lambda: "Model unloaded", None, gradio('model_status'))

    shared.gradio['save_model_settings'].click(
        ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then(
        save_model_settings, gradio('model_menu', 'interface_state'), gradio('model_status'), show_progress=False)

    shared.gradio['lora_menu_apply'].click(load_lora_wrapper, gradio('lora_menu'), gradio('model_status'), show_progress=False)
    shared.gradio['download_model_button'].click(download_model_wrapper, gradio('custom_model_menu', 'download_specific_file'), gradio('model_status'), show_progress=True)
    shared.gradio['get_file_list'].click(partial(download_model_wrapper, return_links=True), gradio('custom_model_menu', 'download_specific_file'), gradio('model_status'), show_progress=True)
    shared.gradio['autoload_model'].change(lambda x: gr.update(visible=not x), gradio('autoload_model'), gradio('load_model'))


def load_model_wrapper(selected_model, loader, autoload=False):
    if not autoload:
        yield f"The settings for `{selected_model}` have been updated.\n\nClick on \"Load\" to load it."
        return

    if selected_model == 'None':
        yield "No model selected"
    else:
        try:
            yield f"Loading `{selected_model}`..."
            shared.model_name = selected_model
            unload_model()
            if selected_model != '':
                shared.model, shared.tokenizer = load_model(shared.model_name, loader)

            if shared.model is not None:
                output = f"Successfully loaded `{selected_model}`."

                settings = get_model_metadata(selected_model)
                if 'instruction_template' in settings:
                    output += '\n\nIt seems to be an instruction-following model with template "{}". In the chat tab, instruct or chat-instruct modes should be used.'.format(settings['instruction_template'])

                yield output
            else:
                yield f"Failed to load `{selected_model}`."
        except:
            exc = traceback.format_exc()
            logger.error('Failed to load the model.')
            print(exc)
            yield exc.replace('\n', '\n\n')


def load_lora_wrapper(selected_loras):
    yield ("Applying the following LoRAs to {}:\n\n{}".format(shared.model_name, '\n'.join(selected_loras)))
    add_lora_to_model(selected_loras)
    yield ("Successfuly applied the LoRAs")


def download_model_wrapper(repo_id, specific_file, progress=gr.Progress(), return_links=False, check=False):
    try:
        progress(0.0)
        downloader = importlib.import_module("download-model").ModelDownloader()
        model, branch = downloader.sanitize_model_and_branch_names(repo_id, None)
        yield ("Getting the download links from Hugging Face")
        links, sha256, is_lora, is_llamacpp = downloader.get_download_links_from_huggingface(model, branch, text_only=False, specific_file=specific_file)
        if return_links:
            yield '\n\n'.join([f"`{Path(link).name}`" for link in links])
            return

        yield ("Getting the output folder")
        base_folder = shared.args.lora_dir if is_lora else shared.args.model_dir
        output_folder = downloader.get_output_folder(model, branch, is_lora, is_llamacpp=is_llamacpp, base_folder=base_folder)
        if check:
            progress(0.5)
            yield ("Checking previously downloaded files")
            downloader.check_model_files(model, branch, links, sha256, output_folder)
            progress(1.0)
        else:
            yield (f"Downloading file{'s' if len(links) > 1 else ''} to `{output_folder}/`")
            downloader.download_model_files(model, branch, links, sha256, output_folder, progress_bar=progress, threads=4, is_llamacpp=is_llamacpp)
            yield ("Done!")
    except:
        progress(1.0)
        yield traceback.format_exc().replace('\n', '\n\n')


def update_truncation_length(current_length, state):
    if 'loader' in state:
        if state['loader'].lower().startswith('exllama'):
            return state['max_seq_len']
        elif state['loader'] in ['llama.cpp', 'llamacpp_HF', 'ctransformers']:
            return state['n_ctx']

    return current_length