Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- .gradio/certificate.pem +31 -0
- README.md +80 -8
- creators.py +506 -0
- requirements.txt +4 -0
.gradio/certificate.pem
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
-----BEGIN CERTIFICATE-----
|
2 |
+
MIIFazCCA1OgAwIBAgIRAIIQz7DSQONZRGPgu2OCiwAwDQYJKoZIhvcNAQELBQAw
|
3 |
+
TzELMAkGA1UEBhMCVVMxKTAnBgNVBAoTIEludGVybmV0IFNlY3VyaXR5IFJlc2Vh
|
4 |
+
cmNoIEdyb3VwMRUwEwYDVQQDEwxJU1JHIFJvb3QgWDEwHhcNMTUwNjA0MTEwNDM4
|
5 |
+
WhcNMzUwNjA0MTEwNDM4WjBPMQswCQYDVQQGEwJVUzEpMCcGA1UEChMgSW50ZXJu
|
6 |
+
ZXQgU2VjdXJpdHkgUmVzZWFyY2ggR3JvdXAxFTATBgNVBAMTDElTUkcgUm9vdCBY
|
7 |
+
MTCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAK3oJHP0FDfzm54rVygc
|
8 |
+
h77ct984kIxuPOZXoHj3dcKi/vVqbvYATyjb3miGbESTtrFj/RQSa78f0uoxmyF+
|
9 |
+
0TM8ukj13Xnfs7j/EvEhmkvBioZxaUpmZmyPfjxwv60pIgbz5MDmgK7iS4+3mX6U
|
10 |
+
A5/TR5d8mUgjU+g4rk8Kb4Mu0UlXjIB0ttov0DiNewNwIRt18jA8+o+u3dpjq+sW
|
11 |
+
T8KOEUt+zwvo/7V3LvSye0rgTBIlDHCNAymg4VMk7BPZ7hm/ELNKjD+Jo2FR3qyH
|
12 |
+
B5T0Y3HsLuJvW5iB4YlcNHlsdu87kGJ55tukmi8mxdAQ4Q7e2RCOFvu396j3x+UC
|
13 |
+
B5iPNgiV5+I3lg02dZ77DnKxHZu8A/lJBdiB3QW0KtZB6awBdpUKD9jf1b0SHzUv
|
14 |
+
KBds0pjBqAlkd25HN7rOrFleaJ1/ctaJxQZBKT5ZPt0m9STJEadao0xAH0ahmbWn
|
15 |
+
OlFuhjuefXKnEgV4We0+UXgVCwOPjdAvBbI+e0ocS3MFEvzG6uBQE3xDk3SzynTn
|
16 |
+
jh8BCNAw1FtxNrQHusEwMFxIt4I7mKZ9YIqioymCzLq9gwQbooMDQaHWBfEbwrbw
|
17 |
+
qHyGO0aoSCqI3Haadr8faqU9GY/rOPNk3sgrDQoo//fb4hVC1CLQJ13hef4Y53CI
|
18 |
+
rU7m2Ys6xt0nUW7/vGT1M0NPAgMBAAGjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNV
|
19 |
+
HRMBAf8EBTADAQH/MB0GA1UdDgQWBBR5tFnme7bl5AFzgAiIyBpY9umbbjANBgkq
|
20 |
+
hkiG9w0BAQsFAAOCAgEAVR9YqbyyqFDQDLHYGmkgJykIrGF1XIpu+ILlaS/V9lZL
|
21 |
+
ubhzEFnTIZd+50xx+7LSYK05qAvqFyFWhfFQDlnrzuBZ6brJFe+GnY+EgPbk6ZGQ
|
22 |
+
3BebYhtF8GaV0nxvwuo77x/Py9auJ/GpsMiu/X1+mvoiBOv/2X/qkSsisRcOj/KK
|
23 |
+
NFtY2PwByVS5uCbMiogziUwthDyC3+6WVwW6LLv3xLfHTjuCvjHIInNzktHCgKQ5
|
24 |
+
ORAzI4JMPJ+GslWYHb4phowim57iaztXOoJwTdwJx4nLCgdNbOhdjsnvzqvHu7Ur
|
25 |
+
TkXWStAmzOVyyghqpZXjFaH3pO3JLF+l+/+sKAIuvtd7u+Nxe5AW0wdeRlN8NwdC
|
26 |
+
jNPElpzVmbUq4JUagEiuTDkHzsxHpFKVK7q4+63SM1N95R1NbdWhscdCb+ZAJzVc
|
27 |
+
oyi3B43njTOQ5yOf+1CceWxG1bQVs5ZufpsMljq4Ui0/1lvh+wjChP4kqKOJ2qxq
|
28 |
+
4RgqsahDYVvTH9w7jXbyLeiNdd8XM2w9U/t7y0Ff/9yi0GE44Za4rF2LN9d11TPA
|
29 |
+
mRGunUHBcnWEvgJBQl9nJEiU0Zsnvgc/ubhPgXRR4Xq37Z0j4r7g1SgEEzwxA57d
|
30 |
+
emyPxgcYxn/eR44/KJ4EBs+lVDR3veyJm+kXQ99b21/+jh5Xos1AnX5iItreGCc=
|
31 |
+
-----END CERTIFICATE-----
|
README.md
CHANGED
@@ -1,13 +1,85 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
|
4 |
-
colorFrom: purple
|
5 |
-
colorTo: blue
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.20.0
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
short_description: TT-Creators Exploration
|
11 |
---
|
|
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: tt-creators
|
3 |
+
app_file: creators.py
|
|
|
|
|
4 |
sdk: gradio
|
5 |
sdk_version: 5.20.0
|
|
|
|
|
|
|
6 |
---
|
7 |
+
# TikTok Creator Analyzer
|
8 |
|
9 |
+
A Gradio-based tool for analyzing TikTok creator profiles from CSV files.
|
10 |
+
|
11 |
+
## Features
|
12 |
+
|
13 |
+
- Efficiently loads and processes millions of TikTok creator profiles
|
14 |
+
- Caches data in Parquet format for faster subsequent loads
|
15 |
+
- Tracks processed files to avoid reprocessing the same data
|
16 |
+
- Incrementally updates the database when new files are added
|
17 |
+
- Advanced search with multiple filters:
|
18 |
+
- Follower count range (min/max)
|
19 |
+
- Video count range (min/max)
|
20 |
+
- Keywords in signature
|
21 |
+
- Region filter
|
22 |
+
- "Has Email" filter to find profiles with contact information
|
23 |
+
- Download search results as CSV
|
24 |
+
- Network accessible interface (binds to 0.0.0.0)
|
25 |
+
- Shareable via temporary public URL
|
26 |
+
|
27 |
+
## Installation
|
28 |
+
|
29 |
+
1. Install the required dependencies:
|
30 |
+
|
31 |
+
```bash
|
32 |
+
pip install -r requirements.txt
|
33 |
+
```
|
34 |
+
|
35 |
+
2. Make sure your CSV files are in the correct location (`../data/tiktok_profiles/`)
|
36 |
+
|
37 |
+
## Usage
|
38 |
+
|
39 |
+
Run the script:
|
40 |
+
|
41 |
+
```bash
|
42 |
+
python creators.py
|
43 |
+
```
|
44 |
+
|
45 |
+
The first run will:
|
46 |
+
1. Load all CSV files from the data directory
|
47 |
+
2. Combine them into a single dataset
|
48 |
+
3. Save the combined data as a Parquet file for faster loading in the future
|
49 |
+
4. Track which files have been processed to avoid duplicates
|
50 |
+
5. Launch a Gradio web interface for searching and analyzing the data
|
51 |
+
|
52 |
+
Subsequent runs will:
|
53 |
+
1. Load the existing data from the Parquet file
|
54 |
+
2. Check for new CSV files that haven't been processed yet
|
55 |
+
3. If new files exist, process only those files and update the database
|
56 |
+
4. Launch the Gradio interface with the updated data
|
57 |
+
|
58 |
+
The interface will be accessible from:
|
59 |
+
- Other machines on your network at: `http://your-ip-address:7860`
|
60 |
+
- A temporary public URL that will be displayed in the console (thanks to `share=True`)
|
61 |
+
|
62 |
+
## Maintenance
|
63 |
+
|
64 |
+
The application includes a Maintenance tab that shows:
|
65 |
+
- How many files have been processed
|
66 |
+
- When the database was last updated
|
67 |
+
- An option to force reload all files (useful if you suspect data corruption)
|
68 |
+
|
69 |
+
## Data Format
|
70 |
+
|
71 |
+
The CSV files should have the following columns:
|
72 |
+
- id
|
73 |
+
- unique_id
|
74 |
+
- follower_count
|
75 |
+
- nickname
|
76 |
+
- video_count
|
77 |
+
- following_count
|
78 |
+
- signature
|
79 |
+
- email
|
80 |
+
- bio_link
|
81 |
+
- updated_at
|
82 |
+
- tt_seller
|
83 |
+
- region
|
84 |
+
- language
|
85 |
+
- url
|
creators.py
ADDED
@@ -0,0 +1,506 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import os
|
3 |
+
import glob
|
4 |
+
import pandas as pd
|
5 |
+
import gradio as gr
|
6 |
+
import time
|
7 |
+
import pyarrow as pa
|
8 |
+
import pyarrow.parquet as pq
|
9 |
+
import json
|
10 |
+
from pathlib import Path
|
11 |
+
|
12 |
+
# Configuration
|
13 |
+
DATA_DIR = Path("../data/tiktok_profiles")
|
14 |
+
CACHE_FILE = Path("../data/tiktok_profiles_combined.parquet")
|
15 |
+
PROCESSED_FILES_LOG = Path("../data/processed_files.json")
|
16 |
+
COLUMNS = [
|
17 |
+
"id",
|
18 |
+
"unique_id",
|
19 |
+
"follower_count",
|
20 |
+
"nickname",
|
21 |
+
"video_count",
|
22 |
+
"following_count",
|
23 |
+
"signature",
|
24 |
+
"email",
|
25 |
+
"bio_link",
|
26 |
+
"updated_at",
|
27 |
+
"tt_seller",
|
28 |
+
"region",
|
29 |
+
"language",
|
30 |
+
"url",
|
31 |
+
]
|
32 |
+
|
33 |
+
|
34 |
+
def get_processed_files():
|
35 |
+
"""
|
36 |
+
Get the list of already processed files from the log.
|
37 |
+
Returns a set of filenames that have been processed.
|
38 |
+
"""
|
39 |
+
if PROCESSED_FILES_LOG.exists():
|
40 |
+
with open(PROCESSED_FILES_LOG, "r") as f:
|
41 |
+
return set(json.load(f))
|
42 |
+
return set()
|
43 |
+
|
44 |
+
|
45 |
+
def update_processed_files(processed_files):
|
46 |
+
"""
|
47 |
+
Update the log of processed files.
|
48 |
+
"""
|
49 |
+
PROCESSED_FILES_LOG.parent.mkdir(exist_ok=True)
|
50 |
+
with open(PROCESSED_FILES_LOG, "w") as f:
|
51 |
+
json.dump(list(processed_files), f)
|
52 |
+
|
53 |
+
|
54 |
+
def load_data(force_reload=False):
|
55 |
+
"""
|
56 |
+
Load data from either the cache file or from individual CSV files.
|
57 |
+
Only processes new files that haven't been processed before.
|
58 |
+
Returns a pandas DataFrame with all the data.
|
59 |
+
|
60 |
+
Args:
|
61 |
+
force_reload: If True, reprocess all files regardless of whether they've been processed before.
|
62 |
+
"""
|
63 |
+
start_time = time.time()
|
64 |
+
|
65 |
+
# Get all available CSV files
|
66 |
+
all_csv_files = {file.name: file for file in DATA_DIR.glob("*.csv")}
|
67 |
+
|
68 |
+
# If cache exists and we're not forcing a reload, load from cache
|
69 |
+
if CACHE_FILE.exists() and not force_reload:
|
70 |
+
print(f"Loading data from cache file: {CACHE_FILE}")
|
71 |
+
df = pd.read_parquet(CACHE_FILE)
|
72 |
+
|
73 |
+
# Check for new files
|
74 |
+
processed_files = get_processed_files()
|
75 |
+
new_files = [
|
76 |
+
all_csv_files[name] for name in all_csv_files if name not in processed_files
|
77 |
+
]
|
78 |
+
|
79 |
+
if not new_files:
|
80 |
+
print(
|
81 |
+
f"No new files to process. Data loaded in {time.time() - start_time:.2f} seconds"
|
82 |
+
)
|
83 |
+
return df
|
84 |
+
|
85 |
+
print(f"Found {len(new_files)} new files to process")
|
86 |
+
|
87 |
+
# Process only the new files
|
88 |
+
new_dfs = []
|
89 |
+
for i, file in enumerate(new_files):
|
90 |
+
print(f"Loading new file {i+1}/{len(new_files)}: {file.name}")
|
91 |
+
|
92 |
+
# Read CSV with optimized settings
|
93 |
+
chunk_df = pd.read_csv(
|
94 |
+
file,
|
95 |
+
dtype={
|
96 |
+
"id": "str",
|
97 |
+
"unique_id": "str",
|
98 |
+
"follower_count": "Int64",
|
99 |
+
"nickname": "str",
|
100 |
+
"video_count": "Int64",
|
101 |
+
"following_count": "Int64",
|
102 |
+
"signature": "str",
|
103 |
+
"email": "str",
|
104 |
+
"bio_link": "str",
|
105 |
+
"updated_at": "str",
|
106 |
+
"tt_seller": "str",
|
107 |
+
"region": "str",
|
108 |
+
"language": "str",
|
109 |
+
"url": "str",
|
110 |
+
},
|
111 |
+
low_memory=False,
|
112 |
+
)
|
113 |
+
new_dfs.append(chunk_df)
|
114 |
+
processed_files.add(file.name)
|
115 |
+
|
116 |
+
if new_dfs:
|
117 |
+
# Combine new data with existing data
|
118 |
+
print("Combining new data with existing data...")
|
119 |
+
new_data = pd.concat(new_dfs, ignore_index=True)
|
120 |
+
df = pd.concat([df, new_data], ignore_index=True)
|
121 |
+
|
122 |
+
# Remove duplicates based on unique_id
|
123 |
+
df = df.drop_duplicates(subset=["unique_id"], keep="last")
|
124 |
+
|
125 |
+
# Save updated data to cache file
|
126 |
+
print(f"Saving updated data to {CACHE_FILE}")
|
127 |
+
df.to_parquet(CACHE_FILE, index=False)
|
128 |
+
|
129 |
+
# Update the processed files log
|
130 |
+
update_processed_files(processed_files)
|
131 |
+
|
132 |
+
print(f"Data loaded and updated in {time.time() - start_time:.2f} seconds")
|
133 |
+
return df
|
134 |
+
|
135 |
+
# If no cache file or force_reload is True, process all files
|
136 |
+
print(f"Loading data from CSV files in {DATA_DIR}")
|
137 |
+
|
138 |
+
# Get all CSV files
|
139 |
+
csv_files = list(all_csv_files.values())
|
140 |
+
total_files = len(csv_files)
|
141 |
+
print(f"Found {total_files} CSV files")
|
142 |
+
|
143 |
+
# Load data in chunks
|
144 |
+
dfs = []
|
145 |
+
processed_files = set()
|
146 |
+
|
147 |
+
for i, file in enumerate(csv_files):
|
148 |
+
if i % 10 == 0:
|
149 |
+
print(f"Loading file {i+1}/{total_files}: {file.name}")
|
150 |
+
|
151 |
+
# Read CSV with optimized settings
|
152 |
+
chunk_df = pd.read_csv(
|
153 |
+
file,
|
154 |
+
dtype={
|
155 |
+
"id": "str",
|
156 |
+
"unique_id": "str",
|
157 |
+
"follower_count": "Int64",
|
158 |
+
"nickname": "str",
|
159 |
+
"video_count": "Int64",
|
160 |
+
"following_count": "Int64",
|
161 |
+
"signature": "str",
|
162 |
+
"email": "str",
|
163 |
+
"bio_link": "str",
|
164 |
+
"updated_at": "str",
|
165 |
+
"tt_seller": "str",
|
166 |
+
"region": "str",
|
167 |
+
"language": "str",
|
168 |
+
"url": "str",
|
169 |
+
},
|
170 |
+
low_memory=False,
|
171 |
+
)
|
172 |
+
dfs.append(chunk_df)
|
173 |
+
processed_files.add(file.name)
|
174 |
+
|
175 |
+
# Combine all dataframes
|
176 |
+
print("Combining all dataframes...")
|
177 |
+
df = pd.concat(dfs, ignore_index=True)
|
178 |
+
|
179 |
+
# Remove duplicates based on unique_id
|
180 |
+
df = df.drop_duplicates(subset=["unique_id"], keep="last")
|
181 |
+
|
182 |
+
# Save to cache file
|
183 |
+
print(f"Saving combined data to {CACHE_FILE}")
|
184 |
+
CACHE_FILE.parent.mkdir(exist_ok=True)
|
185 |
+
df.to_parquet(CACHE_FILE, index=False)
|
186 |
+
|
187 |
+
# Update the processed files log
|
188 |
+
update_processed_files(processed_files)
|
189 |
+
|
190 |
+
print(f"Data loaded and cached in {time.time() - start_time:.2f} seconds")
|
191 |
+
return df
|
192 |
+
|
193 |
+
|
194 |
+
def search_by_username(df, username):
|
195 |
+
"""Search for profiles by username (unique_id)"""
|
196 |
+
if not username:
|
197 |
+
return pd.DataFrame()
|
198 |
+
|
199 |
+
# Case-insensitive search
|
200 |
+
results = df[df["unique_id"].str.lower().str.contains(username.lower(), na=False)]
|
201 |
+
return results.head(100) # Limit results to prevent UI overload
|
202 |
+
|
203 |
+
|
204 |
+
def search_by_nickname(df, nickname):
|
205 |
+
"""Search for profiles by nickname"""
|
206 |
+
if not nickname:
|
207 |
+
return pd.DataFrame()
|
208 |
+
|
209 |
+
# Case-insensitive search
|
210 |
+
results = df[df["nickname"].str.lower().str.contains(nickname.lower(), na=False)]
|
211 |
+
return results.head(100) # Limit results to prevent UI overload
|
212 |
+
|
213 |
+
|
214 |
+
def search_by_follower_count(df, min_followers, max_followers):
|
215 |
+
"""Search for profiles by follower count range"""
|
216 |
+
if min_followers is None:
|
217 |
+
min_followers = 0
|
218 |
+
if max_followers is None:
|
219 |
+
max_followers = df["follower_count"].max()
|
220 |
+
|
221 |
+
results = df[
|
222 |
+
(df["follower_count"] >= min_followers)
|
223 |
+
& (df["follower_count"] <= max_followers)
|
224 |
+
]
|
225 |
+
return results.head(100) # Limit results to prevent UI overload
|
226 |
+
|
227 |
+
|
228 |
+
def format_results(df):
|
229 |
+
"""Format the results for display"""
|
230 |
+
if df.empty:
|
231 |
+
# Return an empty DataFrame with the same columns instead of a string
|
232 |
+
return pd.DataFrame(columns=df.columns)
|
233 |
+
|
234 |
+
# Format the DataFrame for display
|
235 |
+
display_df = df.copy()
|
236 |
+
|
237 |
+
# Convert follower count to human-readable format
|
238 |
+
def format_number(num):
|
239 |
+
if pd.isna(num):
|
240 |
+
return "N/A"
|
241 |
+
if num >= 1_000_000:
|
242 |
+
return f"{num/1_000_000:.1f}M"
|
243 |
+
elif num >= 1_000:
|
244 |
+
return f"{num/1_000:.1f}K"
|
245 |
+
return str(num)
|
246 |
+
|
247 |
+
display_df["follower_count"] = display_df["follower_count"].apply(format_number)
|
248 |
+
display_df["video_count"] = display_df["video_count"].apply(format_number)
|
249 |
+
display_df["following_count"] = display_df["following_count"].apply(format_number)
|
250 |
+
|
251 |
+
return display_df
|
252 |
+
|
253 |
+
|
254 |
+
def combined_search(
|
255 |
+
df,
|
256 |
+
min_followers,
|
257 |
+
max_followers,
|
258 |
+
min_videos,
|
259 |
+
max_videos,
|
260 |
+
signature_query,
|
261 |
+
region,
|
262 |
+
has_email,
|
263 |
+
):
|
264 |
+
"""Combined search function using all criteria"""
|
265 |
+
results = df.copy()
|
266 |
+
|
267 |
+
# Apply each filter if provided
|
268 |
+
if min_followers is not None:
|
269 |
+
results = results[results["follower_count"] >= min_followers]
|
270 |
+
|
271 |
+
if max_followers is not None:
|
272 |
+
results = results[results["follower_count"] <= max_followers]
|
273 |
+
|
274 |
+
if min_videos is not None:
|
275 |
+
results = results[results["video_count"] >= min_videos]
|
276 |
+
|
277 |
+
if max_videos is not None:
|
278 |
+
results = results[results["video_count"] <= max_videos]
|
279 |
+
|
280 |
+
if signature_query:
|
281 |
+
results = results[
|
282 |
+
results["signature"]
|
283 |
+
.str.lower()
|
284 |
+
.str.contains(signature_query.lower(), na=False)
|
285 |
+
]
|
286 |
+
|
287 |
+
if region:
|
288 |
+
results = results[results["region"].str.lower() == region.lower()]
|
289 |
+
|
290 |
+
# Filter for profiles with email
|
291 |
+
if has_email:
|
292 |
+
results = results[results["email"].notna() & (results["email"] != "")]
|
293 |
+
|
294 |
+
return results.head(1000) # Limit to 1000 results to prevent UI overload
|
295 |
+
|
296 |
+
|
297 |
+
def create_interface(df):
|
298 |
+
"""Create the Gradio interface"""
|
299 |
+
# Get min and max follower counts for slider
|
300 |
+
min_followers_global = max(1000, int(df["follower_count"].min()))
|
301 |
+
max_followers_global = min(10000000, int(df["follower_count"].max()))
|
302 |
+
|
303 |
+
# Get min and max video counts for slider
|
304 |
+
min_videos_global = max(1, int(df["video_count"].min()))
|
305 |
+
max_videos_global = min(10000, int(df["video_count"].max()))
|
306 |
+
|
307 |
+
# Get unique regions for dropdown
|
308 |
+
regions = sorted(df["region"].dropna().unique().tolist())
|
309 |
+
regions = [""] + regions # Add empty option
|
310 |
+
|
311 |
+
with gr.Blocks(title="TikTok Creator Analyzer") as interface:
|
312 |
+
gr.Markdown("# TikTok Creator Analyzer")
|
313 |
+
gr.Markdown(f"Database contains {len(df):,} creator profiles")
|
314 |
+
|
315 |
+
# Show top 100 profiles by default
|
316 |
+
top_profiles = df.sort_values(by="follower_count", ascending=False).head(100)
|
317 |
+
default_view = format_results(top_profiles)
|
318 |
+
|
319 |
+
with gr.Tab("Overview"):
|
320 |
+
gr.Markdown("## Top 100 Profiles by Follower Count")
|
321 |
+
overview_results = gr.Dataframe(value=default_view, label="Top Profiles")
|
322 |
+
|
323 |
+
refresh_btn = gr.Button("Refresh")
|
324 |
+
refresh_btn.click(
|
325 |
+
fn=lambda: format_results(
|
326 |
+
df.sort_values(by="follower_count", ascending=False).head(100)
|
327 |
+
),
|
328 |
+
inputs=[],
|
329 |
+
outputs=overview_results,
|
330 |
+
)
|
331 |
+
|
332 |
+
with gr.Tab("Advanced Search"):
|
333 |
+
with gr.Row():
|
334 |
+
with gr.Column(scale=1):
|
335 |
+
gr.Markdown("### Follower Count")
|
336 |
+
min_followers_slider = gr.Slider(
|
337 |
+
minimum=min_followers_global,
|
338 |
+
maximum=max_followers_global,
|
339 |
+
value=min_followers_global,
|
340 |
+
step=1000,
|
341 |
+
label="Minimum Followers",
|
342 |
+
interactive=True,
|
343 |
+
)
|
344 |
+
max_followers_slider = gr.Slider(
|
345 |
+
minimum=min_followers_global,
|
346 |
+
maximum=max_followers_global,
|
347 |
+
value=max_followers_global,
|
348 |
+
step=1000,
|
349 |
+
label="Maximum Followers",
|
350 |
+
interactive=True,
|
351 |
+
)
|
352 |
+
|
353 |
+
gr.Markdown("### Video Count")
|
354 |
+
min_videos_slider = gr.Slider(
|
355 |
+
minimum=min_videos_global,
|
356 |
+
maximum=max_videos_global,
|
357 |
+
value=min_videos_global,
|
358 |
+
step=10,
|
359 |
+
label="Minimum Videos",
|
360 |
+
interactive=True,
|
361 |
+
)
|
362 |
+
max_videos_slider = gr.Slider(
|
363 |
+
minimum=min_videos_global,
|
364 |
+
maximum=max_videos_global,
|
365 |
+
value=max_videos_global,
|
366 |
+
step=10,
|
367 |
+
label="Maximum Videos",
|
368 |
+
interactive=True,
|
369 |
+
)
|
370 |
+
|
371 |
+
with gr.Column(scale=1):
|
372 |
+
signature_input = gr.Textbox(label="Keywords in Signature")
|
373 |
+
region_input = gr.Dropdown(label="Region", choices=regions)
|
374 |
+
has_email_checkbox = gr.Checkbox(label="Has Email", value=False)
|
375 |
+
search_btn = gr.Button("Search", variant="primary", size="lg")
|
376 |
+
|
377 |
+
results_count = gr.Markdown("### Results: 0 profiles found")
|
378 |
+
|
379 |
+
# Create a dataframe with download button
|
380 |
+
with gr.Row():
|
381 |
+
search_results = gr.Dataframe(label="Results")
|
382 |
+
download_btn = gr.Button("Download Results as CSV")
|
383 |
+
|
384 |
+
# Function to update results count
|
385 |
+
def update_results_count(results_df):
|
386 |
+
count = len(results_df)
|
387 |
+
return f"### Results: {count:,} profiles found"
|
388 |
+
|
389 |
+
# Function to perform search and update results
|
390 |
+
def perform_search(
|
391 |
+
min_followers,
|
392 |
+
max_followers,
|
393 |
+
min_videos,
|
394 |
+
max_videos,
|
395 |
+
signature,
|
396 |
+
region,
|
397 |
+
has_email,
|
398 |
+
):
|
399 |
+
results = combined_search(
|
400 |
+
df,
|
401 |
+
min_followers,
|
402 |
+
max_followers,
|
403 |
+
min_videos,
|
404 |
+
max_videos,
|
405 |
+
signature,
|
406 |
+
region,
|
407 |
+
has_email,
|
408 |
+
)
|
409 |
+
formatted_results = format_results(results)
|
410 |
+
count_text = update_results_count(results)
|
411 |
+
return formatted_results, count_text
|
412 |
+
|
413 |
+
# Function to download results as CSV
|
414 |
+
def download_results(results_df):
|
415 |
+
if results_df.empty:
|
416 |
+
return None
|
417 |
+
|
418 |
+
# Convert back to original format for download
|
419 |
+
download_df = df[df["unique_id"].isin(results_df["unique_id"])]
|
420 |
+
|
421 |
+
# Save to temporary CSV file
|
422 |
+
temp_csv = "temp_results.csv"
|
423 |
+
download_df.to_csv(temp_csv, index=False)
|
424 |
+
return temp_csv
|
425 |
+
|
426 |
+
# Connect the search button
|
427 |
+
search_btn.click(
|
428 |
+
fn=perform_search,
|
429 |
+
inputs=[
|
430 |
+
min_followers_slider,
|
431 |
+
max_followers_slider,
|
432 |
+
min_videos_slider,
|
433 |
+
max_videos_slider,
|
434 |
+
signature_input,
|
435 |
+
region_input,
|
436 |
+
has_email_checkbox,
|
437 |
+
],
|
438 |
+
outputs=[search_results, results_count],
|
439 |
+
)
|
440 |
+
|
441 |
+
# Connect the download button
|
442 |
+
download_btn.click(
|
443 |
+
fn=download_results,
|
444 |
+
inputs=[search_results],
|
445 |
+
outputs=[gr.File(label="Download")],
|
446 |
+
)
|
447 |
+
|
448 |
+
with gr.Tab("Statistics"):
|
449 |
+
gr.Markdown("## Database Statistics")
|
450 |
+
|
451 |
+
# Calculate some basic statistics
|
452 |
+
total_creators = len(df)
|
453 |
+
total_followers = df["follower_count"].sum()
|
454 |
+
avg_followers = df["follower_count"].mean()
|
455 |
+
median_followers = df["follower_count"].median()
|
456 |
+
max_followers = df["follower_count"].max()
|
457 |
+
|
458 |
+
stats_md = f"""
|
459 |
+
- Total Creators: {total_creators:,}
|
460 |
+
- Total Followers: {total_followers:,}
|
461 |
+
- Average Followers: {avg_followers:,.2f}
|
462 |
+
- Median Followers: {median_followers:,}
|
463 |
+
- Max Followers: {max_followers:,}
|
464 |
+
"""
|
465 |
+
|
466 |
+
gr.Markdown(stats_md)
|
467 |
+
|
468 |
+
with gr.Tab("Maintenance"):
|
469 |
+
gr.Markdown("## Database Maintenance")
|
470 |
+
|
471 |
+
# Get processed files info
|
472 |
+
processed_files = get_processed_files()
|
473 |
+
|
474 |
+
maintenance_md = f"""
|
475 |
+
- Total processed files: {len(processed_files)}
|
476 |
+
- Last update: {time.ctime(CACHE_FILE.stat().st_mtime) if CACHE_FILE.exists() else 'Never'}
|
477 |
+
"""
|
478 |
+
|
479 |
+
gr.Markdown(maintenance_md)
|
480 |
+
|
481 |
+
with gr.Row():
|
482 |
+
force_reload_btn = gr.Button("Force Reload All Files")
|
483 |
+
reload_status = gr.Markdown("Click to reload all files from scratch")
|
484 |
+
|
485 |
+
def reload_all_files():
|
486 |
+
return "Reloading all files... This may take a while. Please restart the application."
|
487 |
+
|
488 |
+
force_reload_btn.click(
|
489 |
+
fn=reload_all_files, inputs=[], outputs=reload_status
|
490 |
+
)
|
491 |
+
|
492 |
+
return interface
|
493 |
+
|
494 |
+
|
495 |
+
def main():
|
496 |
+
print("Loading TikTok creator data...")
|
497 |
+
df = load_data()
|
498 |
+
print(f"Loaded {len(df):,} creator profiles")
|
499 |
+
|
500 |
+
# Create and launch the interface
|
501 |
+
interface = create_interface(df)
|
502 |
+
interface.launch(share=True, server_name="0.0.0.0")
|
503 |
+
|
504 |
+
|
505 |
+
if __name__ == "__main__":
|
506 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
gradio
|
3 |
+
pyarrow
|
4 |
+
pip-chillpython
|