Spaces:
Sleeping
Sleeping
import marimo | |
__generated_with = "0.9.14" | |
app = marimo.App(width="medium") | |
def __(): | |
import marimo as mo | |
import os | |
from huggingface_hub import InferenceClient | |
return InferenceClient, mo, os | |
def __(): | |
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta" | |
return (MODEL_NAME,) | |
def __(MODEL_NAME, mo): | |
mo.md(f""" | |
# Chat with **{MODEL_NAME}** | |
""") | |
return | |
def __(max_tokens, mo, system_message, temperature, top_p): | |
mo.hstack( | |
[ | |
system_message, | |
mo.vstack([temperature, top_p, max_tokens], align="end"), | |
], | |
) | |
return | |
def __(mo, respond): | |
chat = mo.ui.chat( | |
model=respond, | |
prompts=["Tell me a joke.", "What is the square root of {{number}}?"], | |
) | |
chat | |
return (chat,) | |
def __(InferenceClient, MODEL_NAME, os): | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.26.2/en/guides/inference | |
""" | |
hf_token = os.environ.get("HF_TOKEN") | |
if not hf_token: | |
print("HF_TOKEN not set, may have limited access.") | |
client = InferenceClient( | |
MODEL_NAME, | |
token=hf_token, | |
) | |
return client, hf_token | |
def __(client, mo): | |
# Create UI controls | |
system_message = mo.ui.text_area( | |
value="You are a friendly Chatbot.", | |
label="System message", | |
) | |
max_tokens = mo.ui.slider( | |
start=1, | |
stop=2048, | |
value=512, | |
step=1, | |
label="Max new tokens", | |
show_value=True, | |
) | |
temperature = mo.ui.slider( | |
start=0.1, | |
stop=4.0, | |
value=0.7, | |
step=0.1, | |
label="Temperature", | |
show_value=True, | |
) | |
top_p = mo.ui.slider( | |
start=0.1, | |
stop=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
show_value=True, | |
) | |
# Add more configuration options if needed. | |
# Create chat callback | |
def respond(messages: list[mo.ai.ChatMessage], config): | |
chat_messages = [{"role": "system", "content": system_message.value}] | |
for message in messages: | |
parts = [] | |
# Add text | |
parts.append({"type": "text", "text": message.content}) | |
# Add attachments | |
if message.attachments: | |
for attachment in message.attachments: | |
content_type = attachment.content_type or "" | |
# This example only supports image attachments | |
if content_type.startswith("image"): | |
parts.append( | |
{ | |
"type": "image_url", | |
"image_url": {"url": attachment.url}, | |
} | |
) | |
else: | |
raise ValueError( | |
f"Unsupported content type {content_type}" | |
) | |
chat_messages.append({"role": message.role, "content": parts}) | |
response = client.chat_completion( | |
chat_messages, | |
max_tokens=max_tokens.value, | |
temperature=temperature.value, | |
top_p=top_p.value, | |
stream=False, | |
) | |
# You can return strings, markdown, charts, tables, dataframes, and more. | |
return response.choices[0].message.content | |
return max_tokens, respond, system_message, temperature, top_p | |
def __(): | |
# If you need to do anything _reactively_ to the chat messages, | |
# you can access the chat messages using the `chat.value` attribute. | |
# chat.value | |
return | |
if __name__ == "__main__": | |
app.run() | |