Spaces:
Sleeping
Sleeping
Commit
·
047c64c
1
Parent(s):
c70eeb5
feat: updated website
Browse files
app.py
CHANGED
|
@@ -241,6 +241,7 @@ if page == "Summary":
|
|
| 241 |
)}
|
| 242 |
)
|
| 243 |
# Customer Analysis Page
|
|
|
|
| 244 |
elif page == "Customer Analysis":
|
| 245 |
st.markdown("""
|
| 246 |
<h2 style='text-align: center; font-size: 2.5rem;'>Customer Analysis</h2>
|
|
@@ -265,7 +266,6 @@ elif page == "Customer Analysis":
|
|
| 265 |
customer_match = customer_clusters[customer_clusters['cliente_id'] == customer_code]
|
| 266 |
time.sleep(1)
|
| 267 |
|
| 268 |
-
|
| 269 |
if not customer_match.empty:
|
| 270 |
cluster = customer_match['cluster_id'].values[0]
|
| 271 |
|
|
@@ -313,121 +313,103 @@ elif page == "Customer Analysis":
|
|
| 313 |
actual_sales = df_agg_2024[df_agg_2024['cliente_id'] == customer_code_str]
|
| 314 |
|
| 315 |
if not actual_sales.empty:
|
|
|
|
| 316 |
results = results.merge(actual_sales[['cliente_id', 'marca_id_encoded', 'fecha_mes', 'precio_total']],
|
| 317 |
on=['cliente_id', 'marca_id_encoded', 'fecha_mes'],
|
| 318 |
how='left')
|
| 319 |
results.rename(columns={'precio_total': 'ventas_reales'}, inplace=True)
|
| 320 |
-
|
| 321 |
-
#
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
sales_data_filtered = sales_data_filtered.apply(pd.to_numeric, errors='coerce')
|
| 366 |
-
all_manufacturers = all_manufacturers.apply(pd.to_numeric, errors='coerce')
|
| 367 |
-
|
| 368 |
-
# Sort manufacturers by percentage of units and get top 10
|
| 369 |
-
top_units = all_manufacturers.sort_values(by=all_manufacturers.columns[0], ascending=False).head(10)
|
| 370 |
-
|
| 371 |
-
# Sort manufacturers by total sales and get top 10
|
| 372 |
-
top_sales = sales_data_filtered.sort_values(by=sales_data_filtered.columns[0], ascending=False).head(10)
|
| 373 |
-
|
| 374 |
-
# Combine top manufacturers from both lists and get up to 20 unique manufacturers
|
| 375 |
-
combined_top = pd.concat([top_units, top_sales]).index.unique()[:20]
|
| 376 |
-
|
| 377 |
-
# Filter out manufacturers that are not present in both datasets
|
| 378 |
-
combined_top = [m for m in combined_top if m in all_manufacturers.index and m in sales_data_filtered.index]
|
| 379 |
-
|
| 380 |
-
# st.write(f"Number of combined top manufacturers: {len(combined_top)}")
|
| 381 |
-
|
| 382 |
-
if combined_top:
|
| 383 |
-
# Create a DataFrame with combined data for these top manufacturers
|
| 384 |
-
combined_data = pd.DataFrame({
|
| 385 |
-
'units': all_manufacturers.loc[combined_top, all_manufacturers.columns[0]],
|
| 386 |
-
'sales': sales_data_filtered.loc[combined_top, sales_data_filtered.columns[0]]
|
| 387 |
-
}).fillna(0)
|
| 388 |
-
|
| 389 |
-
# Sort by units, then by sales
|
| 390 |
-
combined_data_sorted = combined_data.sort_values(by=['units', 'sales'], ascending=False)
|
| 391 |
-
|
| 392 |
-
# Filter out manufacturers with 0 units
|
| 393 |
-
non_zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] > 0]
|
| 394 |
-
|
| 395 |
-
# If we have less than 3 non-zero manufacturers, add some zero-value ones
|
| 396 |
-
if len(non_zero_manufacturers) < 3:
|
| 397 |
-
zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] == 0].head(3 - len(non_zero_manufacturers))
|
| 398 |
-
manufacturers_to_show = pd.concat([non_zero_manufacturers, zero_manufacturers])
|
| 399 |
-
else:
|
| 400 |
-
manufacturers_to_show = non_zero_manufacturers
|
| 401 |
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 413 |
else:
|
| 414 |
-
st.
|
| 415 |
|
| 416 |
-
|
| 417 |
-
st.
|
|
|
|
| 418 |
|
| 419 |
-
|
| 420 |
-
|
|
|
|
| 421 |
|
| 422 |
-
|
| 423 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 424 |
|
| 425 |
-
|
| 426 |
-
# (f"Customer {customer_code} found in ventas_clientes")
|
| 427 |
-
# else:
|
| 428 |
-
# (f"Customer {customer_code} not found in ventas_clientes")
|
| 429 |
|
| 430 |
-
#
|
| 431 |
sales_columns = ['VENTA_2021', 'VENTA_2022', 'VENTA_2023']
|
| 432 |
if all(col in ventas_clientes.columns for col in sales_columns):
|
| 433 |
customer_sales_data = ventas_clientes[ventas_clientes['codigo_cliente'] == customer_code]
|
|
@@ -442,13 +424,13 @@ elif page == "Customer Analysis":
|
|
| 442 |
actual_sales_2024 = results[results['fecha_mes'].str.startswith('2024')]['ventas_reales'].sum()
|
| 443 |
predicted_sales_2024 = results[results['fecha_mes'].str.startswith('2024')]['ventas_predichas'].sum()
|
| 444 |
|
| 445 |
-
# Estimate full-year predicted sales
|
| 446 |
months_available = 9 # Data available until September
|
| 447 |
actual_sales_2024_annual = (actual_sales_2024 / months_available) * 12
|
| 448 |
|
| 449 |
# Add 2024 actual and predicted sales
|
| 450 |
-
sales_values = list(customer_sales) + [actual_sales_2024_annual]
|
| 451 |
-
predicted_values = list(customer_sales) + [predicted_sales_2024]
|
| 452 |
|
| 453 |
# Add 2024 to the years list
|
| 454 |
years.append('2024')
|
|
@@ -502,6 +484,268 @@ elif page == "Customer Analysis":
|
|
| 502 |
st.warning("Sales data for 2021-2023 not available in the dataset.")
|
| 503 |
|
| 504 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 505 |
# Customer Recommendations Page
|
| 506 |
elif page == "Articles Recommendations":
|
| 507 |
st.title("Articles Recommendations")
|
|
|
|
| 241 |
)}
|
| 242 |
)
|
| 243 |
# Customer Analysis Page
|
| 244 |
+
|
| 245 |
elif page == "Customer Analysis":
|
| 246 |
st.markdown("""
|
| 247 |
<h2 style='text-align: center; font-size: 2.5rem;'>Customer Analysis</h2>
|
|
|
|
| 266 |
customer_match = customer_clusters[customer_clusters['cliente_id'] == customer_code]
|
| 267 |
time.sleep(1)
|
| 268 |
|
|
|
|
| 269 |
if not customer_match.empty:
|
| 270 |
cluster = customer_match['cluster_id'].values[0]
|
| 271 |
|
|
|
|
| 313 |
actual_sales = df_agg_2024[df_agg_2024['cliente_id'] == customer_code_str]
|
| 314 |
|
| 315 |
if not actual_sales.empty:
|
| 316 |
+
# Merge predictions with actual sales
|
| 317 |
results = results.merge(actual_sales[['cliente_id', 'marca_id_encoded', 'fecha_mes', 'precio_total']],
|
| 318 |
on=['cliente_id', 'marca_id_encoded', 'fecha_mes'],
|
| 319 |
how='left')
|
| 320 |
results.rename(columns={'precio_total': 'ventas_reales'}, inplace=True)
|
| 321 |
+
else:
|
| 322 |
+
# If no actual sales data for 2024, fill 'ventas_reales' with 0
|
| 323 |
+
results['ventas_reales'] = 0
|
| 324 |
+
|
| 325 |
+
# Ensure any missing sales data is filled with 0
|
| 326 |
+
results['ventas_reales'].fillna(0, inplace=True)
|
| 327 |
+
|
| 328 |
+
# Split space into two columns
|
| 329 |
+
col1, col2 = st.columns(2)
|
| 330 |
+
|
| 331 |
+
# Column 1: Radar chart for top manufacturers
|
| 332 |
+
with col1:
|
| 333 |
+
# Radar chart logic remains the same
|
| 334 |
+
customer_df = df[df["CLIENTE"] == str(customer_code)]
|
| 335 |
+
all_manufacturers = customer_df.iloc[:, 1:].T
|
| 336 |
+
all_manufacturers.index = all_manufacturers.index.astype(str)
|
| 337 |
+
|
| 338 |
+
customer_euros = euros_proveedor[euros_proveedor["CLIENTE"] == str(customer_code)]
|
| 339 |
+
sales_data = customer_euros.iloc[:, 1:].T
|
| 340 |
+
sales_data.index = sales_data.index.astype(str)
|
| 341 |
+
|
| 342 |
+
sales_data_filtered = sales_data.drop(index='CLIENTE', errors='ignore')
|
| 343 |
+
sales_data_filtered = sales_data_filtered.apply(pd.to_numeric, errors='coerce')
|
| 344 |
+
all_manufacturers = all_manufacturers.apply(pd.to_numeric, errors='coerce')
|
| 345 |
+
|
| 346 |
+
top_units = all_manufacturers.sort_values(by=all_manufacturers.columns[0], ascending=False).head(10)
|
| 347 |
+
top_sales = sales_data_filtered.sort_values(by=sales_data_filtered.columns[0], ascending=False).head(10)
|
| 348 |
+
combined_top = pd.concat([top_units, top_sales]).index.unique()[:20]
|
| 349 |
+
|
| 350 |
+
combined_top = [m for m in combined_top if m in all_manufacturers.index and m in sales_data_filtered.index]
|
| 351 |
+
|
| 352 |
+
if combined_top:
|
| 353 |
+
combined_data = pd.DataFrame({
|
| 354 |
+
'units': all_manufacturers.loc[combined_top, all_manufacturers.columns[0]],
|
| 355 |
+
'sales': sales_data_filtered.loc[combined_top, sales_data_filtered.columns[0]]
|
| 356 |
+
}).fillna(0)
|
| 357 |
+
|
| 358 |
+
combined_data_sorted = combined_data.sort_values(by=['units', 'sales'], ascending=False)
|
| 359 |
+
non_zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] > 0]
|
| 360 |
+
|
| 361 |
+
if len(non_zero_manufacturers) < 3:
|
| 362 |
+
zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] == 0].head(3 - len(non_zero_manufacturers))
|
| 363 |
+
manufacturers_to_show = pd.concat([non_zero_manufacturers, zero_manufacturers])
|
| 364 |
+
else:
|
| 365 |
+
manufacturers_to_show = non_zero_manufacturers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 366 |
|
| 367 |
+
values = manufacturers_to_show['units'].tolist()
|
| 368 |
+
amounts = manufacturers_to_show['sales'].tolist()
|
| 369 |
+
manufacturers = [get_supplier_name(m) for m in manufacturers_to_show.index]
|
| 370 |
|
| 371 |
+
if manufacturers:
|
| 372 |
+
fig = radar_chart(manufacturers, values, amounts, f'Radar Chart for Top {len(manufacturers)} Manufacturers of Customer {customer_code}')
|
| 373 |
+
st.pyplot(fig)
|
| 374 |
|
| 375 |
+
# Column 2: Alerts and additional analysis
|
| 376 |
+
with col2:
|
| 377 |
+
st.markdown(f"### Alerts for {customer_code}")
|
| 378 |
+
|
| 379 |
+
# Identify manufacturers that didn't meet predicted sales
|
| 380 |
+
underperforming_manufacturers = results[results['ventas_reales'] < results['ventas_predichas']]
|
| 381 |
+
|
| 382 |
+
if not underperforming_manufacturers.empty:
|
| 383 |
+
st.warning("Some manufacturers have not met predicted sales:")
|
| 384 |
+
for index, row in underperforming_manufacturers.iterrows():
|
| 385 |
+
manufacturer_name = get_supplier_name(row['marca_id_encoded'])
|
| 386 |
+
predicted = row['ventas_predichas']
|
| 387 |
+
actual = row['ventas_reales']
|
| 388 |
+
delta = predicted - actual
|
| 389 |
+
st.write(f"- {manufacturer_name}: Predicted = {predicted:.2f}€, Actual = {actual:.2f}€, Missed = {delta:.2f}€")
|
| 390 |
else:
|
| 391 |
+
st.success("All manufacturers have met or exceeded predicted sales.")
|
| 392 |
|
| 393 |
+
# Gráfico adicional: Comparar las ventas predichas y reales para los principales fabricantes
|
| 394 |
+
st.markdown("### Predicted vs Actual Sales for Top Manufacturers")
|
| 395 |
+
top_manufacturers = results.groupby('marca_id_encoded').agg({'ventas_reales': 'sum', 'ventas_predichas': 'sum'}).sort_values(by='ventas_reales', ascending=False).head(10)
|
| 396 |
|
| 397 |
+
fig_comparison = go.Figure()
|
| 398 |
+
fig_comparison.add_trace(go.Bar(x=top_manufacturers.index, y=top_manufacturers['ventas_reales'], name="Actual Sales", marker_color='blue'))
|
| 399 |
+
fig_comparison.add_trace(go.Bar(x=top_manufacturers.index, y=top_manufacturers['ventas_predichas'], name="Predicted Sales", marker_color='orange'))
|
| 400 |
|
| 401 |
+
fig_comparison.update_layout(
|
| 402 |
+
title="Actual vs Predicted Sales by Top Manufacturers",
|
| 403 |
+
xaxis_title="Manufacturer",
|
| 404 |
+
yaxis_title="Sales (€)",
|
| 405 |
+
barmode='group',
|
| 406 |
+
height=400,
|
| 407 |
+
hovermode="x unified"
|
| 408 |
+
)
|
| 409 |
|
| 410 |
+
st.plotly_chart(fig_comparison, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
| 411 |
|
| 412 |
+
# Ensure customer sales (2021-2024)
|
| 413 |
sales_columns = ['VENTA_2021', 'VENTA_2022', 'VENTA_2023']
|
| 414 |
if all(col in ventas_clientes.columns for col in sales_columns):
|
| 415 |
customer_sales_data = ventas_clientes[ventas_clientes['codigo_cliente'] == customer_code]
|
|
|
|
| 424 |
actual_sales_2024 = results[results['fecha_mes'].str.startswith('2024')]['ventas_reales'].sum()
|
| 425 |
predicted_sales_2024 = results[results['fecha_mes'].str.startswith('2024')]['ventas_predichas'].sum()
|
| 426 |
|
| 427 |
+
# Estimate full-year predicted sales
|
| 428 |
months_available = 9 # Data available until September
|
| 429 |
actual_sales_2024_annual = (actual_sales_2024 / months_available) * 12
|
| 430 |
|
| 431 |
# Add 2024 actual and predicted sales
|
| 432 |
+
sales_values = list(customer_sales) + [actual_sales_2024_annual]
|
| 433 |
+
predicted_values = list(customer_sales) + [predicted_sales_2024]
|
| 434 |
|
| 435 |
# Add 2024 to the years list
|
| 436 |
years.append('2024')
|
|
|
|
| 484 |
st.warning("Sales data for 2021-2023 not available in the dataset.")
|
| 485 |
|
| 486 |
|
| 487 |
+
|
| 488 |
+
# elif page == "Customer Analysis":
|
| 489 |
+
# st.markdown("""
|
| 490 |
+
# <h2 style='text-align: center; font-size: 2.5rem;'>Customer Analysis</h2>
|
| 491 |
+
# <p style='text-align: center; font-size: 1.2rem; color: gray;'>
|
| 492 |
+
# Enter the customer code to explore detailed customer insights,
|
| 493 |
+
# including past sales, predictions for the current year, and manufacturer-specific information.
|
| 494 |
+
# </p>
|
| 495 |
+
# """, unsafe_allow_html=True)
|
| 496 |
+
|
| 497 |
+
# # Combine text input and dropdown into a single searchable selectbox
|
| 498 |
+
# customer_code = st.selectbox(
|
| 499 |
+
# "Search and Select Customer Code",
|
| 500 |
+
# df['CLIENTE'].unique(), # All customer codes
|
| 501 |
+
# format_func=lambda x: str(x), # Ensures the values are displayed as strings
|
| 502 |
+
# help="Start typing to search for a specific customer code"
|
| 503 |
+
# )
|
| 504 |
+
|
| 505 |
+
# if st.button("Calcular"):
|
| 506 |
+
# if customer_code:
|
| 507 |
+
# with st.spinner("We are identifying the customer's cluster..."):
|
| 508 |
+
# # Find Customer's Cluster
|
| 509 |
+
# customer_match = customer_clusters[customer_clusters['cliente_id'] == customer_code]
|
| 510 |
+
# time.sleep(1)
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
# if not customer_match.empty:
|
| 514 |
+
# cluster = customer_match['cluster_id'].values[0]
|
| 515 |
+
|
| 516 |
+
# with st.spinner(f"Selecting predictive model..."):
|
| 517 |
+
# # Load the Corresponding Model
|
| 518 |
+
# model_path = f'models/modelo_cluster_{cluster}.txt'
|
| 519 |
+
# gbm = lgb.Booster(model_file=model_path)
|
| 520 |
+
|
| 521 |
+
# with st.spinner("Getting the data ready..."):
|
| 522 |
+
# # Load predict data for that cluster
|
| 523 |
+
# predict_data = pd.read_csv(f'predicts/predict_cluster_{cluster}.csv')
|
| 524 |
+
|
| 525 |
+
# # Convert cliente_id to string
|
| 526 |
+
# predict_data['cliente_id'] = predict_data['cliente_id'].astype(str)
|
| 527 |
+
|
| 528 |
+
# with st.spinner("Filtering data..."):
|
| 529 |
+
|
| 530 |
+
# # Filter for the specific customer
|
| 531 |
+
# customer_code_str = str(customer_code)
|
| 532 |
+
# customer_data = predict_data[predict_data['cliente_id'] == customer_code_str]
|
| 533 |
+
|
| 534 |
+
# with st.spinner("Generating sales predictions..."):
|
| 535 |
+
|
| 536 |
+
# if not customer_data.empty:
|
| 537 |
+
# # Define features consistently with the training process
|
| 538 |
+
# lag_features = [f'precio_total_lag_{lag}' for lag in range(1, 25)]
|
| 539 |
+
# features = lag_features + ['mes', 'marca_id_encoded', 'año', 'cluster_id']
|
| 540 |
+
|
| 541 |
+
# # Prepare data for prediction
|
| 542 |
+
# X_predict = customer_data[features]
|
| 543 |
+
|
| 544 |
+
# # Convert categorical features to 'category' dtype
|
| 545 |
+
# categorical_features = ['mes', 'marca_id_encoded', 'cluster_id']
|
| 546 |
+
# for feature in categorical_features:
|
| 547 |
+
# X_predict[feature] = X_predict[feature].astype('category')
|
| 548 |
+
|
| 549 |
+
# # Make Prediction for the selected customer
|
| 550 |
+
# y_pred = gbm.predict(X_predict, num_iteration=gbm.best_iteration)
|
| 551 |
+
|
| 552 |
+
# # Reassemble the results
|
| 553 |
+
# results = customer_data[['cliente_id', 'marca_id_encoded', 'fecha_mes']].copy()
|
| 554 |
+
# results['ventas_predichas'] = y_pred
|
| 555 |
+
|
| 556 |
+
# # Load actual data
|
| 557 |
+
# actual_sales = df_agg_2024[df_agg_2024['cliente_id'] == customer_code_str]
|
| 558 |
+
|
| 559 |
+
# if not actual_sales.empty:
|
| 560 |
+
# results = results.merge(actual_sales[['cliente_id', 'marca_id_encoded', 'fecha_mes', 'precio_total']],
|
| 561 |
+
# on=['cliente_id', 'marca_id_encoded', 'fecha_mes'],
|
| 562 |
+
# how='left')
|
| 563 |
+
# results.rename(columns={'precio_total': 'ventas_reales'}, inplace=True)
|
| 564 |
+
# results['ventas_reales'].fillna(0, inplace=True)
|
| 565 |
+
# # st.write("### Final Results DataFrame:")
|
| 566 |
+
# # st.write(results.head())
|
| 567 |
+
# # st.write(f"Shape: {results.shape}")
|
| 568 |
+
|
| 569 |
+
# # Calculate metrics only for non-null actual sales
|
| 570 |
+
# valid_results = results.dropna(subset=['ventas_reales'])
|
| 571 |
+
# non_zero_actuals = valid_results[valid_results['ventas_reales'] != 0]
|
| 572 |
+
# if not valid_results.empty:
|
| 573 |
+
# mae = mean_absolute_error(valid_results['ventas_reales'], valid_results['ventas_predichas'])
|
| 574 |
+
# mape = np.mean(np.abs((non_zero_actuals['ventas_reales'] - non_zero_actuals['ventas_predichas']) / non_zero_actuals['ventas_reales'])) * 100
|
| 575 |
+
# rmse = np.sqrt(mean_squared_error(valid_results['ventas_reales'], valid_results['ventas_predichas']))
|
| 576 |
+
|
| 577 |
+
# # st.write(f"Actual total sales for Customer {customer_code}: {valid_results['ventas_reales'].sum():.2f}")
|
| 578 |
+
# # st.write(f"MAE: {mae:.2f}€")
|
| 579 |
+
# # st.write(f"MAPE: {mape:.2f}%")
|
| 580 |
+
# # st.write(f"RMSE: {rmse:.2f}")
|
| 581 |
+
|
| 582 |
+
# # # Analysis of results
|
| 583 |
+
# # threshold_good = 100 # You may want to adjust this threshold
|
| 584 |
+
# # if mae < threshold_good:
|
| 585 |
+
# # st.success(f"Customer {customer_code} is performing well based on the predictions.")
|
| 586 |
+
# # else:
|
| 587 |
+
# # st.warning(f"Customer {customer_code} is not performing well based on the predictions.")
|
| 588 |
+
# # else:
|
| 589 |
+
# # st.warning(f"No actual sales data found for customer {customer_code} in df_agg_2024.")
|
| 590 |
+
|
| 591 |
+
# # st.write("### Debug Information for Radar Chart:")
|
| 592 |
+
# # st.write(f"Shape of customer_data: {customer_data.shape}")
|
| 593 |
+
# # st.write(f"Shape of euros_proveedor: {euros_proveedor.shape}")
|
| 594 |
+
|
| 595 |
+
# # Get percentage of units sold for each manufacturer
|
| 596 |
+
# customer_df = df[df["CLIENTE"] == str(customer_code)] # Get the customer data
|
| 597 |
+
# all_manufacturers = customer_df.iloc[:, 1:].T # Exclude CLIENTE column (manufacturers are in columns)
|
| 598 |
+
# all_manufacturers.index = all_manufacturers.index.astype(str)
|
| 599 |
+
|
| 600 |
+
# # Get total sales for each manufacturer from euros_proveedor
|
| 601 |
+
# customer_euros = euros_proveedor[euros_proveedor["CLIENTE"] == str(customer_code)]
|
| 602 |
+
# sales_data = customer_euros.iloc[:, 1:].T # Exclude CLIENTE column
|
| 603 |
+
# sales_data.index = sales_data.index.astype(str)
|
| 604 |
+
|
| 605 |
+
# # Remove the 'CLIENTE' row from sales_data to avoid issues with mixed types
|
| 606 |
+
# sales_data_filtered = sales_data.drop(index='CLIENTE', errors='ignore')
|
| 607 |
+
|
| 608 |
+
# # Ensure all values are numeric
|
| 609 |
+
# sales_data_filtered = sales_data_filtered.apply(pd.to_numeric, errors='coerce')
|
| 610 |
+
# all_manufacturers = all_manufacturers.apply(pd.to_numeric, errors='coerce')
|
| 611 |
+
|
| 612 |
+
# # Sort manufacturers by percentage of units and get top 10
|
| 613 |
+
# top_units = all_manufacturers.sort_values(by=all_manufacturers.columns[0], ascending=False).head(10)
|
| 614 |
+
|
| 615 |
+
# # Sort manufacturers by total sales and get top 10
|
| 616 |
+
# top_sales = sales_data_filtered.sort_values(by=sales_data_filtered.columns[0], ascending=False).head(10)
|
| 617 |
+
|
| 618 |
+
# # Combine top manufacturers from both lists and get up to 20 unique manufacturers
|
| 619 |
+
# combined_top = pd.concat([top_units, top_sales]).index.unique()[:20]
|
| 620 |
+
|
| 621 |
+
# # Filter out manufacturers that are not present in both datasets
|
| 622 |
+
# combined_top = [m for m in combined_top if m in all_manufacturers.index and m in sales_data_filtered.index]
|
| 623 |
+
|
| 624 |
+
# # st.write(f"Number of combined top manufacturers: {len(combined_top)}")
|
| 625 |
+
|
| 626 |
+
# if combined_top:
|
| 627 |
+
# # Create a DataFrame with combined data for these top manufacturers
|
| 628 |
+
# combined_data = pd.DataFrame({
|
| 629 |
+
# 'units': all_manufacturers.loc[combined_top, all_manufacturers.columns[0]],
|
| 630 |
+
# 'sales': sales_data_filtered.loc[combined_top, sales_data_filtered.columns[0]]
|
| 631 |
+
# }).fillna(0)
|
| 632 |
+
|
| 633 |
+
# # Sort by units, then by sales
|
| 634 |
+
# combined_data_sorted = combined_data.sort_values(by=['units', 'sales'], ascending=False)
|
| 635 |
+
|
| 636 |
+
# # Filter out manufacturers with 0 units
|
| 637 |
+
# non_zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] > 0]
|
| 638 |
+
|
| 639 |
+
# # If we have less than 3 non-zero manufacturers, add some zero-value ones
|
| 640 |
+
# if len(non_zero_manufacturers) < 3:
|
| 641 |
+
# zero_manufacturers = combined_data_sorted[combined_data_sorted['units'] == 0].head(3 - len(non_zero_manufacturers))
|
| 642 |
+
# manufacturers_to_show = pd.concat([non_zero_manufacturers, zero_manufacturers])
|
| 643 |
+
# else:
|
| 644 |
+
# manufacturers_to_show = non_zero_manufacturers
|
| 645 |
+
|
| 646 |
+
# values = manufacturers_to_show['units'].tolist()
|
| 647 |
+
# amounts = manufacturers_to_show['sales'].tolist()
|
| 648 |
+
# manufacturers = [get_supplier_name(m) for m in manufacturers_to_show.index]
|
| 649 |
+
|
| 650 |
+
# # st.write(f"### Results for top {len(manufacturers)} manufacturers:")
|
| 651 |
+
# # for manufacturer, value, amount in zip(manufacturers, values, amounts):
|
| 652 |
+
# # (f"{manufacturer} = {value:.2f}% of units, €{amount:.2f} total sales")
|
| 653 |
+
|
| 654 |
+
# if manufacturers: # Only create the chart if we have data
|
| 655 |
+
# fig = radar_chart(manufacturers, values, amounts, f'Radar Chart for Top {len(manufacturers)} Manufacturers of Customer {customer_code}')
|
| 656 |
+
# st.pyplot(fig)
|
| 657 |
+
# else:
|
| 658 |
+
# st.warning("No data available to create the radar chart.")
|
| 659 |
+
|
| 660 |
+
# else:
|
| 661 |
+
# st.warning("No combined top manufacturers found.")
|
| 662 |
+
|
| 663 |
+
# # Ensure codigo_cliente in ventas_clientes is a string
|
| 664 |
+
# ventas_clientes['codigo_cliente'] = ventas_clientes['codigo_cliente'].astype(str).str.strip()
|
| 665 |
+
|
| 666 |
+
# # Ensure customer_code is a string and strip any spaces
|
| 667 |
+
# customer_code = str(customer_code).strip()
|
| 668 |
+
|
| 669 |
+
# # if customer_code in ventas_clientes['codigo_cliente'].unique():
|
| 670 |
+
# # (f"Customer {customer_code} found in ventas_clientes")
|
| 671 |
+
# # else:
|
| 672 |
+
# # (f"Customer {customer_code} not found in ventas_clientes")
|
| 673 |
+
|
| 674 |
+
# # Customer sales 2021-2024 (if data exists)
|
| 675 |
+
# sales_columns = ['VENTA_2021', 'VENTA_2022', 'VENTA_2023']
|
| 676 |
+
# if all(col in ventas_clientes.columns for col in sales_columns):
|
| 677 |
+
# customer_sales_data = ventas_clientes[ventas_clientes['codigo_cliente'] == customer_code]
|
| 678 |
+
|
| 679 |
+
# if not customer_sales_data.empty:
|
| 680 |
+
# customer_sales = customer_sales_data[sales_columns].values[0]
|
| 681 |
+
# years = ['2021', '2022', '2023']
|
| 682 |
+
|
| 683 |
+
# # Add the 2024 actual and predicted data
|
| 684 |
+
# if 'ventas_predichas' in results.columns and 'ventas_reales' in results.columns:
|
| 685 |
+
# # Get the actual and predicted sales for 2024
|
| 686 |
+
# actual_sales_2024 = results[results['fecha_mes'].str.startswith('2024')]['ventas_reales'].sum()
|
| 687 |
+
# predicted_sales_2024 = results[results['fecha_mes'].str.startswith('2024')]['ventas_predichas'].sum()
|
| 688 |
+
|
| 689 |
+
# # Estimate full-year predicted sales (assuming predictions available until September)
|
| 690 |
+
# months_available = 9 # Data available until September
|
| 691 |
+
# actual_sales_2024_annual = (actual_sales_2024 / months_available) * 12
|
| 692 |
+
|
| 693 |
+
# # Add 2024 actual and predicted sales
|
| 694 |
+
# sales_values = list(customer_sales) + [actual_sales_2024_annual] # Actual sales
|
| 695 |
+
# predicted_values = list(customer_sales) + [predicted_sales_2024] # Predicted sales
|
| 696 |
+
|
| 697 |
+
# # Add 2024 to the years list
|
| 698 |
+
# years.append('2024')
|
| 699 |
+
|
| 700 |
+
# fig_sales_bar = go.Figure()
|
| 701 |
+
# # Add trace for historical sales (2021-2023)
|
| 702 |
+
# fig_sales_bar.add_trace(go.Bar(
|
| 703 |
+
# x=years[:3], # 2021, 2022, 2023
|
| 704 |
+
# y=sales_values[:3],
|
| 705 |
+
# name="Historical Sales",
|
| 706 |
+
# marker_color='blue'
|
| 707 |
+
# ))
|
| 708 |
+
|
| 709 |
+
# # Add trace for 2024 actual sales
|
| 710 |
+
# fig_sales_bar.add_trace(go.Bar(
|
| 711 |
+
# x=[years[3]], # 2024
|
| 712 |
+
# y=[sales_values[3]],
|
| 713 |
+
# name="2024 Actual Sales (Annualized)",
|
| 714 |
+
# marker_color='green'
|
| 715 |
+
# ))
|
| 716 |
+
|
| 717 |
+
# # Add trace for 2024 predicted sales
|
| 718 |
+
# fig_sales_bar.add_trace(go.Bar(
|
| 719 |
+
# x=[years[3]], # 2024
|
| 720 |
+
# y=[predicted_values[3]],
|
| 721 |
+
# name="2024 Predicted Sales",
|
| 722 |
+
# marker_color='orange'
|
| 723 |
+
# ))
|
| 724 |
+
|
| 725 |
+
# # Update layout
|
| 726 |
+
# fig_sales_bar.update_layout(
|
| 727 |
+
# title=f"Sales Over the Years for Customer {customer_code}",
|
| 728 |
+
# xaxis_title="Year",
|
| 729 |
+
# yaxis_title="Sales (€)",
|
| 730 |
+
# barmode='group',
|
| 731 |
+
# height=600,
|
| 732 |
+
# legend_title_text="Sales Type",
|
| 733 |
+
# hovermode="x unified"
|
| 734 |
+
# )
|
| 735 |
+
|
| 736 |
+
# # Show the interactive bar chart in Streamlit
|
| 737 |
+
# st.plotly_chart(fig_sales_bar, use_container_width=True)
|
| 738 |
+
|
| 739 |
+
# else:
|
| 740 |
+
# st.warning(f"No predicted or actual data found for customer {customer_code} for 2024.")
|
| 741 |
+
|
| 742 |
+
# else:
|
| 743 |
+
# st.warning(f"No historical sales data found for customer {customer_code}")
|
| 744 |
+
|
| 745 |
+
# else:
|
| 746 |
+
# st.warning("Sales data for 2021-2023 not available in the dataset.")
|
| 747 |
+
|
| 748 |
+
|
| 749 |
# Customer Recommendations Page
|
| 750 |
elif page == "Articles Recommendations":
|
| 751 |
st.title("Articles Recommendations")
|