Delete voice.py
Browse files
voice.py
DELETED
@@ -1,532 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import librosa
|
3 |
-
import commons
|
4 |
-
import re
|
5 |
-
import numpy as np
|
6 |
-
import torch
|
7 |
-
import xml.etree.ElementTree as ET
|
8 |
-
import config
|
9 |
-
import logging
|
10 |
-
import soundfile as sf
|
11 |
-
from torch import no_grad, LongTensor, inference_mode, FloatTensor
|
12 |
-
from io import BytesIO
|
13 |
-
from graiax import silkcoder
|
14 |
-
from utils.nlp import sentence_split
|
15 |
-
from mel_processing import spectrogram_torch
|
16 |
-
from text import text_to_sequence
|
17 |
-
from models import SynthesizerTrn
|
18 |
-
from utils import utils
|
19 |
-
|
20 |
-
# torch.set_num_threads(1) # 设置torch线程为1
|
21 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
-
|
23 |
-
|
24 |
-
class vits:
|
25 |
-
def __init__(self, model, config, model_=None, model_type=None):
|
26 |
-
self.model_type = model_type
|
27 |
-
self.hps_ms = utils.get_hparams_from_file(config)
|
28 |
-
self.n_speakers = getattr(self.hps_ms.data, 'n_speakers', 0)
|
29 |
-
self.n_symbols = len(getattr(self.hps_ms, 'symbols', []))
|
30 |
-
self.speakers = getattr(self.hps_ms, 'speakers', ['0'])
|
31 |
-
self.use_f0 = getattr(self.hps_ms.data, 'use_f0', False)
|
32 |
-
self.emotion_embedding = getattr(self.hps_ms.data, 'emotion_embedding',
|
33 |
-
getattr(self.hps_ms.model, 'emotion_embedding', False))
|
34 |
-
self.bert_embedding = getattr(self.hps_ms.data, 'bert_embedding',
|
35 |
-
getattr(self.hps_ms.model, 'bert_embedding', False))
|
36 |
-
self.hps_ms.model.emotion_embedding = self.emotion_embedding
|
37 |
-
self.hps_ms.model.bert_embedding = self.bert_embedding
|
38 |
-
|
39 |
-
self.net_g_ms = SynthesizerTrn(
|
40 |
-
self.n_symbols,
|
41 |
-
self.hps_ms.data.filter_length // 2 + 1,
|
42 |
-
self.hps_ms.train.segment_size // self.hps_ms.data.hop_length,
|
43 |
-
n_speakers=self.n_speakers,
|
44 |
-
**self.hps_ms.model)
|
45 |
-
_ = self.net_g_ms.eval()
|
46 |
-
|
47 |
-
# load model
|
48 |
-
self.load_model(model, model_)
|
49 |
-
|
50 |
-
def load_model(self, model, model_=None):
|
51 |
-
utils.load_checkpoint(model, self.net_g_ms)
|
52 |
-
self.net_g_ms.to(device)
|
53 |
-
if self.model_type == "hubert":
|
54 |
-
self.hubert = model_
|
55 |
-
elif self.model_type == "w2v2":
|
56 |
-
self.emotion_reference = model_
|
57 |
-
|
58 |
-
def get_cleaned_text(self, text, hps, cleaned=False):
|
59 |
-
if cleaned:
|
60 |
-
text_norm = text_to_sequence(text, hps.symbols, [])
|
61 |
-
else:
|
62 |
-
if self.bert_embedding:
|
63 |
-
text_norm, char_embed = text_to_sequence(text, hps.symbols, hps.data.text_cleaners,
|
64 |
-
bert_embedding=self.bert_embedding)
|
65 |
-
text_norm = LongTensor(text_norm)
|
66 |
-
return text_norm, char_embed
|
67 |
-
else:
|
68 |
-
text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
|
69 |
-
if hps.data.add_blank:
|
70 |
-
text_norm = commons.intersperse(text_norm, 0)
|
71 |
-
text_norm = LongTensor(text_norm)
|
72 |
-
return text_norm
|
73 |
-
|
74 |
-
def get_cleaner(self):
|
75 |
-
return getattr(self.hps_ms.data, 'text_cleaners', [None])[0]
|
76 |
-
|
77 |
-
def get_speakers(self, escape=False):
|
78 |
-
return self.speakers
|
79 |
-
|
80 |
-
def infer(self, params):
|
81 |
-
with no_grad():
|
82 |
-
x_tst = params.get("stn_tst").unsqueeze(0).to(device)
|
83 |
-
x_tst_lengths = LongTensor([params.get("stn_tst").size(0)]).to(device)
|
84 |
-
x_tst_prosody = torch.FloatTensor(params.get("char_embeds")).unsqueeze(0).to(
|
85 |
-
device) if self.bert_embedding else None
|
86 |
-
sid = params.get("sid").to(device) if not self.bert_embedding else None
|
87 |
-
emotion = params.get("emotion").to(device) if self.emotion_embedding else None
|
88 |
-
|
89 |
-
audio = self.net_g_ms.infer(x=x_tst,
|
90 |
-
x_lengths=x_tst_lengths,
|
91 |
-
sid=sid,
|
92 |
-
noise_scale=params.get("noise_scale"),
|
93 |
-
noise_scale_w=params.get("noise_scale_w"),
|
94 |
-
length_scale=params.get("length_scale"),
|
95 |
-
emotion_embedding=emotion,
|
96 |
-
bert=x_tst_prosody)[0][0, 0].data.float().cpu().numpy()
|
97 |
-
|
98 |
-
torch.cuda.empty_cache()
|
99 |
-
|
100 |
-
return audio
|
101 |
-
|
102 |
-
def get_infer_param(self, length_scale, noise_scale, noise_scale_w, text=None, speaker_id=None, audio_path=None,
|
103 |
-
emotion=None, cleaned=False, f0_scale=1):
|
104 |
-
emo = None
|
105 |
-
char_embeds = None
|
106 |
-
if self.model_type != "hubert":
|
107 |
-
if self.bert_embedding:
|
108 |
-
stn_tst, char_embeds = self.get_cleaned_text(text, self.hps_ms, cleaned=cleaned)
|
109 |
-
sid = None
|
110 |
-
else:
|
111 |
-
stn_tst = self.get_cleaned_text(text, self.hps_ms, cleaned=cleaned)
|
112 |
-
sid = LongTensor([speaker_id])
|
113 |
-
|
114 |
-
if self.model_type == "w2v2":
|
115 |
-
# if emotion_reference.endswith('.npy'):
|
116 |
-
# emotion = np.load(emotion_reference)
|
117 |
-
# emotion = FloatTensor(emotion).unsqueeze(0)
|
118 |
-
# else:
|
119 |
-
# audio16000, sampling_rate = librosa.load(
|
120 |
-
# emotion_reference, sr=16000, mono=True)
|
121 |
-
# emotion = self.w2v2(audio16000, sampling_rate)[
|
122 |
-
# 'hidden_states']
|
123 |
-
# emotion_reference = re.sub(
|
124 |
-
# r'\..*$', '', emotion_reference)
|
125 |
-
# np.save(emotion_reference, emotion.squeeze(0))
|
126 |
-
# emotion = FloatTensor(emotion)
|
127 |
-
emo = torch.FloatTensor(self.emotion_reference[emotion]).unsqueeze(0)
|
128 |
-
|
129 |
-
|
130 |
-
elif self.model_type == "hubert":
|
131 |
-
if self.use_f0:
|
132 |
-
audio, sampling_rate = librosa.load(audio_path, sr=self.hps_ms.data.sampling_rate, mono=True)
|
133 |
-
audio16000 = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
|
134 |
-
else:
|
135 |
-
audio16000, sampling_rate = librosa.load(audio_path, sr=16000, mono=True)
|
136 |
-
|
137 |
-
with inference_mode():
|
138 |
-
units = self.hubert.units(FloatTensor(audio16000).unsqueeze(0).unsqueeze(0)).squeeze(0).numpy()
|
139 |
-
if self.use_f0:
|
140 |
-
f0 = librosa.pyin(audio,
|
141 |
-
sr=sampling_rate,
|
142 |
-
fmin=librosa.note_to_hz('C0'),
|
143 |
-
fmax=librosa.note_to_hz('C7'),
|
144 |
-
frame_length=1780)[0]
|
145 |
-
target_length = len(units[:, 0])
|
146 |
-
f0 = np.nan_to_num(np.interp(np.arange(0, len(f0) * target_length, len(f0)) / target_length,
|
147 |
-
np.arange(0, len(f0)), f0)) * f0_scale
|
148 |
-
units[:, 0] = f0 / 10
|
149 |
-
|
150 |
-
stn_tst = FloatTensor(units)
|
151 |
-
sid = LongTensor([speaker_id])
|
152 |
-
params = {"length_scale": length_scale, "noise_scale": noise_scale,
|
153 |
-
"noise_scale_w": noise_scale_w, "stn_tst": stn_tst,
|
154 |
-
"sid": sid, "emotion": emo, "char_embeds": char_embeds}
|
155 |
-
|
156 |
-
return params
|
157 |
-
|
158 |
-
def get_tasks(self, voice):
|
159 |
-
text = voice.get("text", None)
|
160 |
-
speaker_id = voice.get("id", 0)
|
161 |
-
length = voice.get("length", 1)
|
162 |
-
noise = voice.get("noise", 0.667)
|
163 |
-
noisew = voice.get("noisew", 0.8)
|
164 |
-
max = voice.get("max", 50)
|
165 |
-
lang = voice.get("lang", "auto")
|
166 |
-
speaker_lang = voice.get("speaker_lang", None)
|
167 |
-
audio_path = voice.get("audio_path", None)
|
168 |
-
emotion = voice.get("emotion", 0)
|
169 |
-
|
170 |
-
# 去除所有多余的空白字符
|
171 |
-
if text is not None: text = re.sub(r'\s+', ' ', text).strip()
|
172 |
-
|
173 |
-
tasks = []
|
174 |
-
if self.model_type == "vits":
|
175 |
-
sentence_list = sentence_split(text, max, lang, speaker_lang)
|
176 |
-
for sentence in sentence_list:
|
177 |
-
params = self.get_infer_param(text=sentence, speaker_id=speaker_id, length_scale=length,
|
178 |
-
noise_scale=noise, noise_scale_w=noisew)
|
179 |
-
tasks.append(params)
|
180 |
-
|
181 |
-
elif self.model_type == "hubert":
|
182 |
-
params = self.get_infer_param(speaker_id=speaker_id, length_scale=length, noise_scale=noise,
|
183 |
-
noise_scale_w=noisew, audio_path=audio_path)
|
184 |
-
tasks.append(params)
|
185 |
-
|
186 |
-
elif self.model_type == "w2v2":
|
187 |
-
sentence_list = sentence_split(text, max, lang, speaker_lang)
|
188 |
-
for sentence in sentence_list:
|
189 |
-
params = self.get_infer_param(text=sentence, speaker_id=speaker_id, length_scale=length,
|
190 |
-
noise_scale=noise, noise_scale_w=noisew, emotion=emotion)
|
191 |
-
tasks.append(params)
|
192 |
-
|
193 |
-
return tasks
|
194 |
-
|
195 |
-
def get_audio(self, voice, auto_break=False):
|
196 |
-
tasks = self.get_tasks(voice)
|
197 |
-
# 停顿0.75s,避免语音分段合成再拼接后的连接突兀
|
198 |
-
brk = np.zeros(int(0.75 * 22050), dtype=np.int16)
|
199 |
-
|
200 |
-
audios = []
|
201 |
-
for task in tasks:
|
202 |
-
if auto_break:
|
203 |
-
chunk = np.concatenate((self.infer(task), brk), axis=0)
|
204 |
-
else:
|
205 |
-
chunk = self.infer(task)
|
206 |
-
audios.append(chunk)
|
207 |
-
|
208 |
-
audio = np.concatenate(audios, axis=0)
|
209 |
-
return audio
|
210 |
-
|
211 |
-
def get_stream_audio(self, voice, auto_break=False):
|
212 |
-
tasks = self.get_tasks(voice)
|
213 |
-
|
214 |
-
brk = np.zeros(int(0.75 * 22050), dtype=np.int16)
|
215 |
-
|
216 |
-
for task in tasks:
|
217 |
-
if auto_break:
|
218 |
-
chunk = np.concatenate((self.infer(task), brk), axis=0)
|
219 |
-
else:
|
220 |
-
chunk = self.infer(task)
|
221 |
-
|
222 |
-
yield chunk
|
223 |
-
|
224 |
-
def voice_conversion(self, voice):
|
225 |
-
audio_path = voice.get("audio_path")
|
226 |
-
original_id = voice.get("original_id")
|
227 |
-
target_id = voice.get("target_id")
|
228 |
-
|
229 |
-
audio = utils.load_audio_to_torch(
|
230 |
-
audio_path, self.hps_ms.data.sampling_rate)
|
231 |
-
|
232 |
-
y = audio.unsqueeze(0)
|
233 |
-
|
234 |
-
spec = spectrogram_torch(y, self.hps_ms.data.filter_length,
|
235 |
-
self.hps_ms.data.sampling_rate, self.hps_ms.data.hop_length,
|
236 |
-
self.hps_ms.data.win_length,
|
237 |
-
center=False)
|
238 |
-
spec_lengths = LongTensor([spec.size(-1)])
|
239 |
-
sid_src = LongTensor([original_id])
|
240 |
-
|
241 |
-
with no_grad():
|
242 |
-
sid_tgt = LongTensor([target_id])
|
243 |
-
audio = self.net_g_ms.voice_conversion(spec.to(device),
|
244 |
-
spec_lengths.to(device),
|
245 |
-
sid_src=sid_src.to(device),
|
246 |
-
sid_tgt=sid_tgt.to(device))[0][0, 0].data.cpu().float().numpy()
|
247 |
-
|
248 |
-
torch.cuda.empty_cache()
|
249 |
-
|
250 |
-
return audio
|
251 |
-
|
252 |
-
|
253 |
-
class TTS:
|
254 |
-
def __init__(self, voice_obj, voice_speakers):
|
255 |
-
self._voice_obj = voice_obj
|
256 |
-
self._voice_speakers = voice_speakers
|
257 |
-
self._strength_dict = {"x-weak": 0.25, "weak": 0.5, "Medium": 0.75, "Strong": 1, "x-strong": 1.25}
|
258 |
-
self._speakers_count = sum([len(self._voice_speakers[i]) for i in self._voice_speakers])
|
259 |
-
self._vits_speakers_count = len(self._voice_speakers["VITS"])
|
260 |
-
self._hubert_speakers_count = len(self._voice_speakers["HUBERT-VITS"])
|
261 |
-
self._w2v2_speakers_count = len(self._voice_speakers["W2V2-VITS"])
|
262 |
-
self.dem = None
|
263 |
-
|
264 |
-
# Initialization information
|
265 |
-
self.logger = logging.getLogger("vits-simple-api")
|
266 |
-
self.logger.info(f"torch:{torch.__version__} cuda_available:{torch.cuda.is_available()}")
|
267 |
-
self.logger.info(f'device:{device} device.type:{device.type}')
|
268 |
-
|
269 |
-
if getattr(config, "DIMENSIONAL_EMOTION_MODEL", None) != None:
|
270 |
-
try:
|
271 |
-
import audonnx
|
272 |
-
root = os.path.dirname(config.DIMENSIONAL_EMOTION_MODEL)
|
273 |
-
model_file = config.DIMENSIONAL_EMOTION_MODEL
|
274 |
-
self.dem = audonnx.load(root=root, model_file=model_file)
|
275 |
-
except Exception as e:
|
276 |
-
self.logger.warning(f"Load DIMENSIONAL_EMOTION_MODEL failed {e}")
|
277 |
-
|
278 |
-
if self._vits_speakers_count != 0: self.logger.info(f"[VITS] {self._vits_speakers_count} speakers")
|
279 |
-
if self._hubert_speakers_count != 0: self.logger.info(f"[hubert] {self._hubert_speakers_count} speakers")
|
280 |
-
if self._w2v2_speakers_count != 0: self.logger.info(f"[w2v2] {self._w2v2_speakers_count} speakers")
|
281 |
-
self.logger.info(f"{self._speakers_count} speakers in total")
|
282 |
-
if self._speakers_count == 0:
|
283 |
-
self.logger.warning(f"No model was loaded")
|
284 |
-
|
285 |
-
@property
|
286 |
-
def voice_speakers(self):
|
287 |
-
return self._voice_speakers
|
288 |
-
|
289 |
-
@property
|
290 |
-
def speakers_count(self):
|
291 |
-
return self._speakers_count
|
292 |
-
|
293 |
-
@property
|
294 |
-
def vits_speakers_count(self):
|
295 |
-
return self._vits_speakers_count
|
296 |
-
|
297 |
-
@property
|
298 |
-
def hubert_speakers_count(self):
|
299 |
-
return self._hubert_speakers_count
|
300 |
-
|
301 |
-
@property
|
302 |
-
def w2v2_speakers_count(self):
|
303 |
-
return self._w2v2_speakers_count
|
304 |
-
|
305 |
-
def encode(self, sampling_rate, audio, format):
|
306 |
-
with BytesIO() as f:
|
307 |
-
if format.upper() == 'OGG':
|
308 |
-
sf.write(f, audio, sampling_rate, format="ogg")
|
309 |
-
return BytesIO(f.getvalue())
|
310 |
-
elif format.upper() == 'SILK':
|
311 |
-
sf.write(f, audio, sampling_rate, format="wav")
|
312 |
-
return BytesIO(silkcoder.encode(f))
|
313 |
-
elif format.upper() == 'MP3':
|
314 |
-
sf.write(f, audio, sampling_rate, format="mp3")
|
315 |
-
return BytesIO(f.getvalue())
|
316 |
-
elif format.upper() == 'WAV':
|
317 |
-
sf.write(f, audio, sampling_rate, format="wav")
|
318 |
-
return BytesIO(f.getvalue())
|
319 |
-
elif format.upper() == 'FLAC':
|
320 |
-
sf.write(f, audio, sampling_rate, format="flac")
|
321 |
-
return BytesIO(f.getvalue())
|
322 |
-
else:
|
323 |
-
raise ValueError(f"Unsupported format:{format}")
|
324 |
-
|
325 |
-
def convert_time_string(self, time_string):
|
326 |
-
time_value = float(re.findall(r'\d+\.?\d*', time_string)[0])
|
327 |
-
time_unit = re.findall(r'[a-zA-Z]+', time_string)[0].lower()
|
328 |
-
|
329 |
-
if time_unit.upper() == 'MS':
|
330 |
-
return time_value / 1000
|
331 |
-
elif time_unit.upper() == 'S':
|
332 |
-
return time_value
|
333 |
-
elif time_unit.upper() == 'MIN':
|
334 |
-
return time_value * 60
|
335 |
-
elif time_unit.upper() == 'H':
|
336 |
-
return time_value * 3600
|
337 |
-
elif time_unit.upper() == 'D':
|
338 |
-
return time_value * 24 * 3600 # 不会有人真写D吧?
|
339 |
-
else:
|
340 |
-
raise ValueError("Unsupported time unit: {}".format(time_unit))
|
341 |
-
|
342 |
-
def generate_audio_chunks(self, audio):
|
343 |
-
chunk_size = 4096
|
344 |
-
while True:
|
345 |
-
chunk = audio.read(chunk_size)
|
346 |
-
if not chunk:
|
347 |
-
break
|
348 |
-
yield chunk
|
349 |
-
|
350 |
-
def parse_ssml(self, ssml):
|
351 |
-
root = ET.fromstring(ssml)
|
352 |
-
format = root.attrib.get("format", "wav")
|
353 |
-
voice_tasks = []
|
354 |
-
brk_count = 0
|
355 |
-
strength_dict = {"x-weak": 0.25, "weak": 0.5, "Medium": 0.75, "Strong": 1, "x-strong": 1.25}
|
356 |
-
|
357 |
-
for element in root.iter():
|
358 |
-
if element.tag == "voice":
|
359 |
-
id = int(element.attrib.get("id", root.attrib.get("id", config.ID)))
|
360 |
-
lang = element.attrib.get("lang", root.attrib.get("lang", config.LANG))
|
361 |
-
length = float(element.attrib.get("length", root.attrib.get("length", config.LENGTH)))
|
362 |
-
noise = float(element.attrib.get("noise", root.attrib.get("noise", config.NOISE)))
|
363 |
-
noisew = float(element.attrib.get("noisew", root.attrib.get("noisew", config.NOISEW)))
|
364 |
-
max = int(element.attrib.get("max", root.attrib.get("max", "0")))
|
365 |
-
# 不填写默认就是vits
|
366 |
-
model = element.attrib.get("model", root.attrib.get("model", "vits"))
|
367 |
-
# w2v2-vits/emotion-vits才有emotion
|
368 |
-
emotion = int(element.attrib.get("emotion", root.attrib.get("emotion", 0)))
|
369 |
-
|
370 |
-
voice_element = ET.tostring(element, encoding='unicode')
|
371 |
-
|
372 |
-
pattern_voice = r'<voice.*?>(.*?)</voice>'
|
373 |
-
pattern_break = r'<break\s*?(.*?)\s*?/>'
|
374 |
-
|
375 |
-
matches_voice = re.findall(pattern_voice, voice_element)[0]
|
376 |
-
matches_break = re.split(pattern_break, matches_voice)
|
377 |
-
for match in matches_break:
|
378 |
-
strength = re.search(r'\s*strength\s*=\s*[\'\"](.*?)[\'\"]', match)
|
379 |
-
time = re.search(r'\s*time\s*=\s*[\'\"](.*?)[\'\"]', match)
|
380 |
-
# break标签 strength属性
|
381 |
-
if strength:
|
382 |
-
brk = strength_dict[strength.group(1)]
|
383 |
-
voice_tasks.append({"break": brk})
|
384 |
-
brk_count += 1
|
385 |
-
# break标签 time属性
|
386 |
-
elif time:
|
387 |
-
brk = self.convert_time_string(time.group(1))
|
388 |
-
voice_tasks.append({"break": brk})
|
389 |
-
brk_count += 1
|
390 |
-
# break标签 为空说明只写了break,默认停顿0.75s
|
391 |
-
elif match == "":
|
392 |
-
voice_tasks.append({"break": 0.75})
|
393 |
-
brk_count += 1
|
394 |
-
# voice标签中除了break剩下的就是文本
|
395 |
-
else:
|
396 |
-
voice_tasks.append({"id": id,
|
397 |
-
"text": match,
|
398 |
-
"lang": lang,
|
399 |
-
"length": length,
|
400 |
-
"noise": noise,
|
401 |
-
"noisew": noisew,
|
402 |
-
"max": max,
|
403 |
-
"model": model,
|
404 |
-
"emotion": emotion
|
405 |
-
})
|
406 |
-
|
407 |
-
# 分段末尾停顿0.75s
|
408 |
-
voice_tasks.append({"break": 0.75})
|
409 |
-
elif element.tag == "break":
|
410 |
-
# brk_count大于0说明voice标签中有break
|
411 |
-
if brk_count > 0:
|
412 |
-
brk_count -= 1
|
413 |
-
continue
|
414 |
-
brk = strength_dict.get(element.attrib.get("strength"),
|
415 |
-
self.convert_time_string(element.attrib.get("time", "750ms")))
|
416 |
-
voice_tasks.append({"break": brk})
|
417 |
-
|
418 |
-
for i in voice_tasks:
|
419 |
-
self.logger.debug(i)
|
420 |
-
|
421 |
-
return voice_tasks, format
|
422 |
-
|
423 |
-
def create_ssml_infer_task(self, ssml, fname):
|
424 |
-
voice_tasks, format = self.parse_ssml(ssml)
|
425 |
-
|
426 |
-
audios = []
|
427 |
-
for voice in voice_tasks:
|
428 |
-
if voice.get("break"):
|
429 |
-
audios.append(np.zeros(int(voice.get("break") * 22050), dtype=np.int16))
|
430 |
-
else:
|
431 |
-
model = voice.get("model").upper()
|
432 |
-
if model != "VITS" and model != "W2V2-VITS" and model != "EMOTION-VITS":
|
433 |
-
raise ValueError(f"Unsupported model: {voice.get('model')}")
|
434 |
-
voice_obj = self._voice_obj[model][voice.get("id")][1]
|
435 |
-
voice["id"] = self._voice_obj[model][voice.get("id")][0]
|
436 |
-
audio = voice_obj.get_audio(voice)
|
437 |
-
audios.append(audio)
|
438 |
-
|
439 |
-
audio = np.concatenate(audios, axis=0)
|
440 |
-
encoded_audio = self.encode(voice_obj.hps_ms.data.sampling_rate, audio, format)
|
441 |
-
if config.SAVE_AUDIO:
|
442 |
-
path = f"{config.CACHE_PATH}/{fname}"
|
443 |
-
utils.save_audio(encoded_audio.getvalue(), path)
|
444 |
-
return encoded_audio, format
|
445 |
-
|
446 |
-
def vits_infer(self, voice, fname):
|
447 |
-
format = voice.get("format", "wav")
|
448 |
-
voice_obj = self._voice_obj["VITS"][voice.get("id")][1]
|
449 |
-
voice["id"] = self._voice_obj["VITS"][voice.get("id")][0]
|
450 |
-
sampling_rate = voice_obj.hps_ms.data.sampling_rate
|
451 |
-
audio = voice_obj.get_audio(voice, auto_break=True)
|
452 |
-
encoded_audio = self.encode(sampling_rate, audio, format)
|
453 |
-
if config.SAVE_AUDIO:
|
454 |
-
path = f"{config.CACHE_PATH}/{fname}"
|
455 |
-
utils.save_audio(encoded_audio.getvalue(), path)
|
456 |
-
return encoded_audio
|
457 |
-
|
458 |
-
def stream_vits_infer(self, voice, fname):
|
459 |
-
format = voice.get("format", "wav")
|
460 |
-
voice_obj = self._voice_obj["VITS"][voice.get("id")][1]
|
461 |
-
voice["id"] = self._voice_obj["VITS"][voice.get("id")][0]
|
462 |
-
sampling_rate = voice_obj.hps_ms.data.sampling_rate
|
463 |
-
genertator = voice_obj.get_stream_audio(voice, auto_break=True)
|
464 |
-
audio = BytesIO()
|
465 |
-
for chunk in genertator:
|
466 |
-
encoded_audio = self.encode(sampling_rate, chunk, format)
|
467 |
-
for encoded_audio_chunk in self.generate_audio_chunks(encoded_audio):
|
468 |
-
yield encoded_audio_chunk
|
469 |
-
if config.SAVE_AUDIO:
|
470 |
-
audio.write(encoded_audio.getvalue())
|
471 |
-
if config.SAVE_AUDIO:
|
472 |
-
path = f"{config.CACHE_PATH}/{fname}"
|
473 |
-
utils.save_audio(audio.getvalue(), path)
|
474 |
-
|
475 |
-
def hubert_vits_infer(self, voice, fname):
|
476 |
-
format = voice.get("format", "wav")
|
477 |
-
voice_obj = self._voice_obj["HUBERT-VITS"][voice.get("id")][1]
|
478 |
-
voice["id"] = self._voice_obj["HUBERT-VITS"][voice.get("id")][0]
|
479 |
-
sampling_rate = voice_obj.hps_ms.data.sampling_rate
|
480 |
-
audio = voice_obj.get_audio(voice)
|
481 |
-
encoded_audio = self.encode(sampling_rate, audio, format)
|
482 |
-
if config.SAVE_AUDIO:
|
483 |
-
path = f"{config.CACHE_PATH}/{fname}"
|
484 |
-
utils.save_audio(encoded_audio.getvalue(), path)
|
485 |
-
return encoded_audio
|
486 |
-
|
487 |
-
def w2v2_vits_infer(self, voice, fname):
|
488 |
-
format = voice.get("format", "wav")
|
489 |
-
voice_obj = self._voice_obj["W2V2-VITS"][voice.get("id")][1]
|
490 |
-
voice["id"] = self._voice_obj["W2V2-VITS"][voice.get("id")][0]
|
491 |
-
sampling_rate = voice_obj.hps_ms.data.sampling_rate
|
492 |
-
audio = voice_obj.get_audio(voice, auto_break=True)
|
493 |
-
encoded_audio = self.encode(sampling_rate, audio, format)
|
494 |
-
if config.SAVE_AUDIO:
|
495 |
-
path = f"{config.CACHE_PATH}/{fname}"
|
496 |
-
utils.save_audio(encoded_audio.getvalue(), path)
|
497 |
-
return encoded_audio
|
498 |
-
|
499 |
-
def vits_voice_conversion(self, voice, fname):
|
500 |
-
original_id = voice.get("original_id")
|
501 |
-
target_id = voice.get("target_id")
|
502 |
-
format = voice.get("format")
|
503 |
-
|
504 |
-
original_id_obj = int(self._voice_obj["VITS"][original_id][2])
|
505 |
-
target_id_obj = int(self._voice_obj["VITS"][target_id][2])
|
506 |
-
|
507 |
-
if original_id_obj != target_id_obj:
|
508 |
-
raise ValueError(f"speakers are in diffrent VITS Model")
|
509 |
-
|
510 |
-
voice["original_id"] = int(self._voice_obj["VITS"][original_id][0])
|
511 |
-
voice["target_id"] = int(self._voice_obj["VITS"][target_id][0])
|
512 |
-
|
513 |
-
voice_obj = self._voice_obj["VITS"][original_id][1]
|
514 |
-
sampling_rate = voice_obj.hps_ms.data.sampling_rate
|
515 |
-
|
516 |
-
audio = voice_obj.voice_conversion(voice)
|
517 |
-
encoded_audio = self.encode(sampling_rate, audio, format)
|
518 |
-
if config.SAVE_AUDIO:
|
519 |
-
path = f"{config.CACHE_PATH}/{fname}"
|
520 |
-
utils.save_audio(encoded_audio.getvalue(), path)
|
521 |
-
return encoded_audio
|
522 |
-
|
523 |
-
def get_dimensional_emotion_npy(self, audio):
|
524 |
-
if self.dem is None:
|
525 |
-
raise ValueError(f"Please configure DIMENSIONAL_EMOTION_MODEL path in config.py")
|
526 |
-
audio16000, sampling_rate = librosa.load(audio, sr=16000, mono=True)
|
527 |
-
emotion = self.dem(audio16000, sampling_rate)['hidden_states']
|
528 |
-
emotion_npy = BytesIO()
|
529 |
-
np.save(emotion_npy, emotion.squeeze(0))
|
530 |
-
emotion_npy.seek(0)
|
531 |
-
|
532 |
-
return emotion_npy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|